Skip to main content

Advertisement

Log in

Rainfall Forecasting using a Bayesian framework and Long Short-Term Memory Multi-model Estimation based on an hourly meteorological monitoring network. Case of study: Andean Ecuadorian Tropical City

  • Research
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Rainfall forecasting is a challenging task due to the time-dependencies of the variables and the stochastic behavior of the process. The difficulty increases when the zone of interest is characterized by a large spatio-temporal variability of its meteorological variables, causing large variations of rainfall even within a small zone such as the Tropical Andes. To address this problem, we propose a methodology for building a group of models based on Long Short-Term Memory (LSTM) neural networks using Bayesian optimization. We optimize the model hyperparameters using accumulated experience to reduce the hyperparameter search space over successive iterations. The result is a large reduction in modeling time that allows the building of specialized LSTM models for each zone and forecasting time. We evaluated the method by forecasting rain events in the urban zone of Cuenca City in Ecuador, a city with large spatio-temporal variability. The results show that our proposed model offers better performance over the trivial forecaster for up to 9 hours of future forecasts with an accuracy of up to 84.4%. The model was compared to its equivalent LSTM model without optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data used in this work is available in ETAPA EP.

References

  • Abbot J, Marohasy J (2014) Input selection and optimisation for monthly rainfall forecasting in queensland, australia, using artificial neural networks. Atmos Res 138:166–178. https://doi.org/10.1016/j.atmosres.2013.11.002

    Article  Google Scholar 

  • Aswin S, Geetha P, Vinayakumar R (2018) Deep Learning Models for the Prediction of Rainfall. In: International Conference on Communication and Signal Processing. IEEE, India, pp 657–661, https://doi.org/10.1109/ICCSP.2018.8523829

  • Barrera-Animas AY, Oyedele LO, Bilal M, et al (2022) Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting. Mach Learn Appl 7(November 2021):100,204. https://doi.org/10.1016/j.mlwa.2021.100204

    Article  Google Scholar 

  • Battersby S (2013) Beyond the butterfly effect: How life shapes the weather. New Scientist 218 (2923):32–35. https://doi.org/10.1016/S0262-4079(13)61624-3

    Article  Google Scholar 

  • Bendix A, Bendix J (2006) Heavy rainfall episodes in Ecuador during El Niño events and associated regional atmospheric circulation and SST patterns. Adv Geosci 6:43–49

    Article  Google Scholar 

  • Bendix J, Rollenbeck R, Reudenbach C (2006) Diurnal patterns of rainfall in a tropical Andean valley of southern Ecuador as seen by a vertically pointing K-band Doppler radar. Int J Climatol 26(6):829–846. https://doi.org/10.1002/joc.1267

    Article  Google Scholar 

  • Bendix J, Fries A, Zárate J, et al (2017) RadarNet-Sur first weather radar network in tropical high mountains. Bull Am Meteorol Soc 98(6):1235–1254. https://doi.org/10.1175/BAMS-D-15-00178.1

    Article  Google Scholar 

  • Benevides P, Catalao J, Nico G (2019) Neural Network Approach to Forecast Hourly Intense Rainfall Using GNSS Precipitable Water Vapor and Meteorological Sensors. Remote Sens 11(8):966. https://doi.org/10.3390/rs11080966

    Article  Google Scholar 

  • Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with gradient descent is difficult. Trans Neural Netw 5(2):157–166. https://doi.org/10.1109/72.279181

    Article  Google Scholar 

  • Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13:281–305

    Google Scholar 

  • Bergstra J, Bardenet R, Bengio Y, et al (2011) Algorithms for Hyper-parameter Optimization. In: Proceedings of the 24th International Conference on Neural Information Processing Systems. Curran Associates Inc., USA, NIPS’11, pp 2546–2554, http://dl.acm.org/citation.cfm?id=2986459.2986743

  • Bergstra J, Yamins D, Cox D (2013) Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures. In: International Conference on Machine Learning, pp 407–424

  • Cabrera D, Sancho F, Li C, et al (2017) Automatic feature extraction of time-series applied to fault severity assessment of helical gearbox in stationary and non-stationary speed operation. Appl Soft Comput J 58:53–64. https://doi.org/10.1016/j.asoc.2017.04.016

    Article  Google Scholar 

  • Cabrera D, Sancho F, Cerrada M, et al (2018) Echo state network and variational autoencoder for efficient one-class learning on dynamical systems. J Intell Fuzzy Syst 34(6):3799–3809. https://doi.org/10.3233/JIFS-169552

    Article  Google Scholar 

  • Campozano L, Célleri R, Trachte K, et al (2016) Rainfall and cloud dynamics in the Andes: A southern Ecuador case study. Advances in Meteorology. https://doi.org/10.1155/2016/3192765

  • Campozano L, Trachte K, Célleri R, et al (2018) Climatology and Teleconnections of Mesoscale Convective Systems in an Andean Basin in Southern Ecuador: The Case of the Paute Basin. Adv Meteorol

  • Celleri R, Willems P, Buytaert W, et al (2007) Space-time rainfall variability in the Paute basin, Ecuadorian Andes. Hydrol Proc Int J 21(24):3316–3327

    Article  Google Scholar 

  • Chao Z, Pu F, Yin Y, et al (2018) Research on real-time local rainfall prediction based on MEMS sensors. Journal of Sensors 2018. https://doi.org/10.1155/2018/6184713

  • Dabhi VK, Chaudhary S (2014) Hybrid Wavelet-Postfix-GP Model for Rainfall Prediction of Anand Region of India. Adv Artif Intell 2014:1–11. https://doi.org/10.1155/2014/717803

    Article  Google Scholar 

  • French MN, Krajewski WF, Cuykendall RR (1992) Rainfall forecasting in space and time using a neural network. J Hydrol 137(1-4):1–31. https://doi.org/10.1016/0022-1694(92)90046-X

    Article  Google Scholar 

  • Hochreiter S, Schmidhuber J (1997) Long Short-Term Memory. Neural Comput 9(8):1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  • Hong W C (2008) Rainfall forecasting by technological machine learning models. Appl Math Comput 200(1):41–57

    Google Scholar 

  • Hossain I, Rasel H, Imteaz M (2020) Long-term seasonal rainfall forecasting using linear and non-linear modelling approaches: a case study for western australia. Meteorog Atmos Phys 132:131–141

    Article  Google Scholar 

  • Huang M, Lin R, Huang S, et al (2017) A novel approach for precipitation forecast via improved K-nearest neighbor algorithm. Adv Eng Inform 33:89–95

    Article  Google Scholar 

  • Insel N, Poulsen C, Ehlers T (2010) Influence of the andes mountains on south american moisture transport, convection, and precipitation. Clim Dyn 35

  • Jones DR (2001) A Taxonomy of Global Optimization Methods Based on Response Surfaces. J Glob Optim 21:345–383

    Article  Google Scholar 

  • Kang J, Wang H, Yuan F, et al (2020) Prediction of precipitation based on recurrent neural networks in Jingdezhen, Jiangxi Province, China. Atmosphere 11(3):246

    Article  Google Scholar 

  • Khairudin N, Mustapha NB, Aris T, et al (2020) Comparison of machine learning models for rainfall forecasting. In: 2020 International Conference on Computer Science and Its Application in Agriculture (ICOSICA)

  • Kiefer J, Wolfowitz J (1952) Stochastic Estimation of the Maximum of a Regression Function. Ann Math Stat 23(3):462–466. https://doi.org/10.1214/aoms/1177729392

    Article  Google Scholar 

  • Kingma DP, Ba J (2014) Adam: A Method for Stochastic Optimization. arXiv:14126980 [csLG]. https://doi.org/10.48550/arXiv.1412.6980

  • Kotsiantis S, Kanellopoulos D, Pintelas P (2006) Handling imbalanced datasets: A review. GESTS International Transactions on Computer Science and Engineering 30

  • Kumar D, Singh A, Samui P, et al (2019) Forecasting monthly precipitation using sequential modelling. Hydrol Sci J 64(6):690–700. https://doi.org/10.1080/02626667.2019.1595624

    Article  Google Scholar 

  • Lepioufle JM, Leblois E, Creutin JD (2012) Variography of rainfall accumulation in presence of advection. J Hydrol 464:494– 504

    Article  Google Scholar 

  • Li C, de Oliveira JLV, Lozada MC, et al (2018a) A systematic review of fuzzy formalisms for bearing fault diagnosis. IEEE Transactions on Fuzzy Systems p 1. https://doi.org/10.1109/tfuzz.2018.2878200

  • Li C, Tao Y, Ao W, et al (2018b) Improving forecasting accuracy of daily enterprise electricity consumption using a random forest based on ensemble empirical mode decomposition. Energy 165:1220–1227. https://doi.org/10.1016/j.energy.2018.10.113

  • Maqsood I, Abraham A (2007) Weather analysis using ensemble of connectionist learning paradigms. Appl Soft Comput 7(3):995–1004. https://doi.org/10.1016/j.asoc.2006.06.005

    Article  Google Scholar 

  • Marzban C, Stumpf GJ (1998) A neural network for damaging wind prediction. Weather Forecast 13(1):151–163. https://doi.org/10.1175/1520-0434(1998)013〈0151:ANNFDW〉2.0.CO;2

    Article  Google Scholar 

  • Matovelle C, Andreo B, Mudarra M (2021) Análisis de la influencia de la altitud en los eventos de máxima precipitación en una cuenca del pacífico: tendencias y variabilidad. Información Tecnológica 32(6). https://doi.org/10.4067/S0718-07642021000600003

  • Moya-Álvarez A, Gálvez J, Holguin A, et al (2018) Extreme Rainfall Forecast with the WRF-ARW Model in the Central Andes of Peru. Atmosphere 9(9):362

    Article  Google Scholar 

  • Narasimha P, Prudhvi K, Naidu M (2013) An approach to prediction of precipitation using gini index in sliq decision tree. 4th International Conference on Intelligent Systems, Modelling and Simulation

  • Nastos PT, Moustris KP, Larissi IK, et al (2013) Rain intensity forecast using Artificial Neural Networks in Athens, Greece. Atmos Res 119:153–160. https://doi.org/10.1016/j.atmosres.2011.07.020

    Article  Google Scholar 

  • Navone HD, Ceccatto HA (1994) Predicting Indian monsoon rainfall: a neural network approach. Clim Dyn 10(6-7):305–312

    Article  Google Scholar 

  • Ni L, Wang D, Singh VP, et al (2020) Streamflow and rainfall forecasting by two long short-term memory-based models. J Hydrol 583:124,296. https://doi.org/10.1016/j.jhydrol.2019.124296

    Article  Google Scholar 

  • Oñate-Valdivieso F, Fries A, Mendoza K, et al (2018) Temporal and spatial analysis of precipitation patterns in an Andean region of southern Ecuador using LAWR weather radar. Meteorog Atmos Phys 130(4):473–484

    Article  Google Scholar 

  • Orellana-Alvear J, Célleri R, Rollenbeck R, et al (2017) Analysis of Rain Types and Their Z–R Relationships at Different Locations in the High Andes of Southern Ecuador. J Appl Meteorol Climatol 56(11):3065–3080

    Article  Google Scholar 

  • Padrón RS, Wilcox BP, Crespo P, et al (2015) Rainfall in the Andean Páramo: new insights from high-resolution monitoring in Southern Ecuador. J Hydrometeorol 16(3):985–996

    Article  Google Scholar 

  • Rahma A, Abbas S, Gollapalli M, et al (2022) Rainfall prediction system using machine learning fusion for smart cities. Sensors 22(9):3504

    Article  Google Scholar 

  • Ramirez MCV, Velho de Campos, HF Ferreira NJ (2005) Artificial neural network technique for rainfall forecasting applied to the Sao Paulo region. J Hydrol 301(1–4):146–162

    Article  Google Scholar 

  • Ridwan WM, Sapitang M, Aziz A, et al (2021) Rainfall forecasting model using machine learning methods: Case study Terengganu, Malaysia. Ain Shams Eng J 12(2):1651–1663. https://doi.org/10.1016/j.asej.2020.09.011

    Article  Google Scholar 

  • Robert C, Casella G (2011) A Short History of Markov Chain Monte Carlo: Subjective Recollections from Incomplete Data. Stat Sci 26(1):102–115. https://doi.org/10.1214/10-sts351

    Article  Google Scholar 

  • Schultz M, Betancourt C, Gong B, et al (2021) Can deep learning beat numerical weather prediction? The Royal Society Publishing, London

    Book  Google Scholar 

  • Segura H, Junquas C, Espinoza J, et al (2019) New insights into the rainfall variability in the tropical andes on seasonal and interannual time scales. Clim Dyn 53:405–426

    Article  Google Scholar 

  • Smith LN (2017) Cyclical Learning Rates for Training Neural Networks. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV)

  • Sucozhañay A, Célleri R (2018) Impact of Rain Gauges Distribution on the Runoff Simulation of a Small Mountain Catchment in Southern Ecuador. Water 10(9):1169

    Article  Google Scholar 

  • Sulaiman J, Wahab SH (2018) Heavy rainfall forecasting model using artificial neural network for flood prone area. Converg Sec 2017(1):68–76. https://doi.org/10.1007/978-981-10-6451-7_97_9

    Google Scholar 

  • Velasco LCP, Serquiña RP, Abdul Zamad MSA, et al (2019) Week-ahead rainfall forecasting using multilayer perceptron neural network. Procedia Comput Sci 161:386–397. https://doi.org/10.1016/j.procs.2019.11.137

    Article  Google Scholar 

  • Venkata R, Krishna B, Kumar SR, et al (2013) Monthly Rainfall Prediction Using Wavelet Neural Network Analysis. Water Resour Manag 27(10):3697–3711. https://doi.org/10.1007/s11269-013-0374-4

    Article  Google Scholar 

  • Vuille M, Bradley R, Keimig F (1999) Climate variability in the andes of Ecuador and its relation to tropical pacific and atlantic sea surface temperature anomalies. J Clim 13

  • Werbos PJ (1990) Backpropagation through time: what it does and how to do it. Proc IEEE 78 (10):1550–1560. https://doi.org/10.1109/5.58337

    Article  Google Scholar 

  • Wu CL, Chau KW (2013) Prediction of rainfall time series using modular soft computingmethods. Eng Appl Artif Intell 26(3):997–1007. https://doi.org/10.1016/j.engappai.2012.05.023

    Article  Google Scholar 

  • Yáñez-Morroni G, Gironás J, Caneo M, et al (2018) Using the weather research and forecasting (WRF) model for precipitation forecasting in an Andean region with complex topography. Atmosphere 9(8):304

    Article  Google Scholar 

  • Yaseen ZM, Ghareb MI, Ebtehaj I, et al (2018) Rainfall Pattern Forecasting Using Novel Hybrid Intelligent Model Based ANFIS-FFA. Water Resour Manag 32(1):105–122. https://doi.org/10.1007/s11269-017-1797-0

    Article  Google Scholar 

Download references

Acknowledgements

The work was sponsored in part by the GIDTEC project (No. 003-002-2016-03-03). The signal acquisition work was developed by the hydrometeorological network of the Empresa Pública Municipal de Telecomunicaciones, Agua Potable, Alcantarillado y Saneamiento de Cuenca ETAPA EP. The computational work was developed at the GIDTEC Research Group Lab of the Universidad Politécnica Salesiana de Cuenca, Ecuador.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization- Diego Cabrera, Vinicio Sánchez, Mariela Cerrada, Chuan Li. Data collection- Mario Guallpa. Model creation- Diego Cabrera, María Quinteros. Writing original draft- Diego Cabrera, María Quinteros. Writing-Review and Editing- Fernando Sancho, Mariela Cerrada.

Corresponding author

Correspondence to Diego Cabrera.

Ethics declarations

Conflict of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Communicated by: H. Babaie

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabrera, D., Quinteros, M., Cerrada, M. et al. Rainfall Forecasting using a Bayesian framework and Long Short-Term Memory Multi-model Estimation based on an hourly meteorological monitoring network. Case of study: Andean Ecuadorian Tropical City. Earth Sci Inform 16, 1373–1388 (2023). https://doi.org/10.1007/s12145-023-00958-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-023-00958-0

Keywords

Navigation