Skip to main content

Advertisement

Log in

Modeling of structural features from aeromagnetic maps using an improved deep learning technique

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Automated interpretation of geologic features using an improved deep learning technique is a useful and progressively more acceptable tool in modeling magnetic anomalies in derivative maps. An improved deep learning model was employed to analyze magnetic derivative maps for concealed structures controlling mineralization within southwestern Nigeria’s schist-belt. This model was developed to reproduce signatures of geological features with corresponding magnetization amplitude into valid exploration criteria. This was developed by incorporating a feature engineering phase on an existing deep learning model - resunet. The automation process speeds up extraction processes and also fast-track other decision-making processes. The added phase removes noise and also strengthens the critical edge structure of magnetic images. An experiment carried out on a publicly available dataset shows promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bencharef MH, Eldosouky AM, Zamzam S, Djamel B (2022) Polymetallic mineralization prospectivity modelling using multi-geospatial data in logistic regression: The Diapiric Zone, Northeastern Algeria. Geocarto Int 1(36). https://doi.org/10.1080/10106049.2022.2097481

  • Boykov Y, Marie-Pierre J (2001) Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: International Conference on Computer Vision, Vancouver, Canada

  • Carsten R, Vladimir K, Andrew B (2004) Grabcut: interactive foreground extraction using iterated graph cuts. ACM Trans Graphics 23(3):309–314

    Article  Google Scholar 

  • Chen GH, Lu SF, Tian SS (2014) Application of RBF neural network to logging evaluation of clay shale organic heterogeneity. J Gansu Sci 26(1):104–108. https://doi.org/10.16468/j.cnki.issn1004-0366.2014.01.010

    Article  Google Scholar 

  • Diakogiannis FI, Waldner F, Caccetta P, Wu C (2020) ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data. ISPRS J Photogrammetry Remote Sens 162:94–114

    Article  Google Scholar 

  • Dickson BL, Scott KM (1997) Interpretation of aerial gamma-ray surveys-adding the geochemical factors. J Aust Geol Geophys 17(2):187–200

    Google Scholar 

  • Ekwok SE, Akpan AE, Achadu OM, Thompson CE, Eldosouky AM, Abdelrahman K, Andráš P (2022) Towards understanding the source of brine mineralization in Southeast Nigeria: evidence from high-resolution airborne magnetic and gravity data. Minerals 12(2):146. https://doi.org/10.3390/min12020146

    Article  Google Scholar 

  • Eldosouky AM, El-Qassas RAY, Pham LT, Abdelrahman K, Alhumimidi MS, ElBahrawy A, Mickus K, Sehsah H (2022a) Mapping Main Structures and Related Mineralization of the Arabian Shield (Saudi Arabia) Using Sharp Edge Detector of Transformed Gravity Data. Minerals 12(1). https://doi.org/10.3390/min12010071

  • Eldosouky AM, El-Qassas RAY, Pour AB, Mohamed H, Sekandari M (2021) Integration of ASTER satellite imagery and 3D inversion of aeromagnetic data for deep mineral exploration. Adv Space Res. 68(9):3641–3662. https://doi.org/10.1016/j.asr.2021.07.016

  • Eldosouky AM, Ekwok SE, Akpan AE, Achadu OM, Pham LT, Abdelrahman K, Gómez-Ortiz D, Alarifi SS (2022b) Delineation of structural lineaments of Southeast Nigeria using high resolution aeromagnetic data. Open Geosci 1(14):331–340. https://doi.org/10.1515/geo-2022-0360

  • Fu C, Lin NT, Zhang D (2018) Prediction of reservoirs using multi-component seismic data and the deep learning method. Chin J Geophys 61(1):293–303. https://doi.org/10.6038/cjg2018L0193

    Article  Google Scholar 

  • Gonbadi AM, Tabatabaei SH, Carranza EJM (2015) Supervised geochemical anomaly detection by pattern recognition. J Geochem Explor 157:81–91

    Article  Google Scholar 

  • Ji Y, Yuan S, Wang S (2016) Frequency-domain sparse Bayesian learning inversion of AVA data for elastic parameters reflectivities. J ApplGeophys 133:1–8. https://doi.org/10.1016/j.jappgeo.2016.07.016

    Article  Google Scholar 

  • Milligan PR, Gunn PJ (1997) Enhancement and presentation of airborne geophysical. AGSO J Aust Geol Geophys 17: 64–74

  • Mou D, Wang ZW, Huang YL (2015) Lithological identification of volcanic rocks from SVM well logging data: case study in the eastern depression of Liaohe Basin. Chin J Geophys 58(5):1785–1793. https://doi.org/10.6038/cjg20150528

    Article  Google Scholar 

  • Ogungbemi OS, Amigun JO, Olayanju GM, Badmus GO (2021) Airborne and ground geophysical evaluation of potential mineralized zone in parts of Ilesha schist belt, southwestern Nigeria. Interpretation 9(4):SH75–85

    Article  Google Scholar 

  • Okunlola OA, Akinola OO (2011) Physiochemical characteristics and industrial potentials of in-situ clay occurrences around Ijero-Ekiti, Southwestern Nigeria. J Fac Sci Univ Ib 8(2):114–127

    Google Scholar 

  • Oruc B, Selim H (2011) Interpretation of magnetic data in the Sinop area of Mid Black Sea, Turkey, using tilt derivative, Euler deconvolution, and discrete wavelet transform. J Appl Geophys 74:194–204

    Article  Google Scholar 

  • Oyeniyi TO, Salami AA, Ojo SB (2016) Magnetic surveying as an aid to geological mapping: a case study from Obafemi Awolowo University Campus in Ile-Ife, Southwest Nigeria. Ife J Sci 18(2):331–343

    Google Scholar 

  • Pham LH, Oliveira SP, Eldosouky AM, Abdelrahman K, Fnais MS, Xayavong V, Le Andráš PDV (2022) Determination of structural lineaments of Northeastern Laos using the LTHG and EHGA methods. J King Saud Univ Sci 34(3):101825. https://doi.org/10.1016/j.jksus.2022.101825

  • Pham LT, Eldosouky AM, Melouah O, Abdelrahman k, Alzahrani H, Oliveira SP, Andráš P (2021) Mapping subsurface structural lineaments using the edge filters of gravity data. J King Saud Univ - Sci 33(8):101594. https://doi.org/10.1016/j.jksus.2021.101594

  • Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), pp. 839-846. https://doi.org/10.1109/ICCV.1998.710815

  • Twarakavi NKC, Misra D, Bandopadhyay S (2006) Prediction of arsenic in bedrock derived stream sediments at a Gold Mine Site Under Conditions of Sparse Data. Nat Resour Res 15(1):15–26

    Article  Google Scholar 

  • Xiao DS, Lu SF, Chen GH (2014) Mineralogy inversion based on genetic algorithm for shale gas formation. China Geoscience Conference, pp 2497–2499

  • Yuan S, Liu J, Wang S (2018) Seismic waveform classification and first-break picking using convolution neural networks. IEEE Geosci Remote Sens Lett 15(2):272–276. https://doi.org/10.1109/LGRS.2017.2785834

    Article  Google Scholar 

  • Yuan S, Wang S, Nan T (2009) Swarm intelligence optimization and its application in geophysical data inversion. Appl Geophys 6(2):166–174. https://doi.org/10.1007/s11770-009-0018-x

    Article  Google Scholar 

  • Zhang EH, Guan XW, Zhang YG (2011) Support vector machine in volcanic reservoir forecast: east slope in Xujiaweizi depression. Chin J Geophys 54(2):428–432. https://doi.org/10.3969/j.issn.0001-5733.2011.02.020

    Article  Google Scholar 

  • Zhang ZS, Zhang CM, Wang GG (1997) An interactive intelligent technology of fine structural interpretation of Diplog. Chin J Geophys 40(5):726–732

    Google Scholar 

  • Zhang Z, Liu Q, Wang Y (2018) Road extraction by deep residual U-Net. IEEE Geosci Remote Sens Lett 15(5):749–753

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganiyu Olabode Badmus.

Ethics declarations

Declarations

We the above-listed authors declare that there is no conflict of interest on this article.

Additional information

Communicated by H. Babaie

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogungbemi, O.S., Oyebode, K., Badmus, G.O. et al. Modeling of structural features from aeromagnetic maps using an improved deep learning technique. Earth Sci Inform 15, 2665–2671 (2022). https://doi.org/10.1007/s12145-022-00870-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-022-00870-z

Keywords

Navigation