Skip to main content
Log in

Geodetic first order data assimilation using an extended Kalman filtering technique

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

The poor horizontal reference frame in Nigeria lacks the integrity of a twenty-first century geodetic frame because the traditional techniques, which were used in developing them had limited accuracy and are now obsolete. These geodetic controls are still in use today, especially in the execution of local geodetic operations around the country. To address this problem (e.g., poor accuracy) and improve the integrity of first order geodetic controls in Nigeria, we propose an optimization model for these controls to improve their efficiency and accuracy by integrating classical geodetic observations with data from the Global Positioning System (GPS) using the Extended Kalman Filtering (EKF) technique. Specifically, the overall aim of this study is to introduce the EKF technique through data assimilation (DA) for the modeling of these observations and their uncertainties in addition to exogenous noise. Results from this study show that the proposed EKF provides a feasible linearization process in merging classical and GPS data collection modes. For each discrete time in the analysis step, it employs the Kalman gain computation, which attempts to weigh and balance uncertainties between the estimate and observation before proceeding to the analysis step. In this experimental setup, the EKF constrains the system state in order to balance and strengthen the integrity of these first order geodetic monuments. The relationship of the derived system state with GPS coordinates (R2 = 0.85) and classical observations (R2 = 0.92) over Nigeria using a multi linear regression analysis is considerably strong. This outcome provides insight to the performance of the test algorithm and builds on the usefulness of DA techniques in geodetic operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

One hundred and fifty-seven first-order geodetic controls spread across Nigeria were used in this study. These controls were obtained from the office of the surveyor general of the Nigerian federation (OSGOF) and made available for academic purposes and not yet available to the general public.

References

  • Agajelu SI, Moka EC (1989) An estimate of the transformation parameters for the Minna datum of the nigerian geodetic network. Aust Surveyor 34(5):494–501

    Article  Google Scholar 

  • Agutu N, Awange J, Zerihun A, Ndehedehe C, Kuhn M, Fukuda Y (2017) Assessing multi-satellite remote sensing, reanalysis, and land surface models’ products in characterizing agricultural drought in East Africa. Remote Sens Environ 194(0):287–302. https://doi.org/10.1016/j.rse.2017.03.041

  • Anderson JL (2001) An ensemble adjustment Kalman filter for data assimilation. Mon Weather Rev 129(12):2884–2903

    Article  Google Scholar 

  • Awange JL, Bae KH, Claessens SJ (2008) Procrustean solution of the 9-parameter transformation problem. Earth Planets Space 60:529–537

    Article  Google Scholar 

  • Bawa S, Ojigi LM, Dodo JD, Lawal KM (2019) Realization of time-dependent geocentric datum transformation parameters for Nigeria. SN Appl Sci 1(7):1–10

    Article  Google Scholar 

  • Bertino L, Evensen G, Wackernagel H (2003) Sequential Data Assimilation Techniques in Oceanography. Int Stat Rev 71(2):223–241

    Article  Google Scholar 

  • Chen X, Zhang B, Wang T, Bonni A, Zhao G (2020) Robust principal component analysis for accurate outlier sample detection in RNA-Seq data. BMC Bioinf 21(1):1–20

    Article  Google Scholar 

  • Chiang HS, Chen MY, Huang YJ (2019) Wavelet-based EEG processing for epilepsy detection using fuzzy entropy and associative petri net. IEEE Access 7:103255–103262

    Article  Google Scholar 

  • de Jesús Rubio J (2020) Stability analysis of the modified Levenberg-Marquardt algorithm for the artificial neural network training. IEEE Trans Neural Netw Learn Syst 32(8):3510–3524

  • de Jesús Rubio J, Lughofer E, Pieper J, Cruz P, Martinez DI, Ochoa G et al (2021) Adapting H-infinity controller for the desired reference tracking of the sphere position in the maglev process. Inf Sci 569:669–686

    Article  Google Scholar 

  • Dutta I, Das A (2019) Modeling dynamics of peri-urban interface based on principal component analysis (PCA) and cluster analysis (CA): a study of English bazar urban agglomeration, West Bengal. Model Earth Syst Environ 5(2):613–626

    Article  Google Scholar 

  • Ezeigbo CU (1990) Definition of Nigerian geodetic datum from recent Doppler observations. Surv Rev 30(237):343–353

    Article  Google Scholar 

  • Featherstone W, Vanıcek P (1999) The role of coordinate systems, coordinates and heights in horizontal datum transformations. Aust Surv 44:143–150

    Article  Google Scholar 

  • Frohlich H, Broker G (2003) Trafox version 2.1—3d-Kartesische Helmert- ¨ transformation. https://www.koordinatestransformation.de/data/trafox.Pdf. Accessed 18 Sept 2021

  • Gharamti ME, Valstar J, Janssen G, Marsman A, Hoteit I (2016) On the efficiency of the hybrid and the exact second-order sampling formulations of the EnKF: a reality-inspired 3-D test case for estimating biodegradation rates of chlorinated hydrocarbons at the port of Rotterdam. Hydrol Earth Syst Sci 20(4561–4583):2016. https://doi.org/10.5194/hess-20-4561-2016

    Article  Google Scholar 

  • Gin C, Lusch B, Brunton SL, Kutz JN (2021) Deep learning models for global coordinate transformations that linearise PDEs. Eur J Appl Math 32(3):515–539

    Article  Google Scholar 

  • Gogoi RB, Kutty G, Borgohain A (2022) Impact of INSAT-3D satellite-derived wind in 3DVAR and hybrid ensemble-3DVAR data assimilation systems in the simulation of tropical cyclones over the Bay of Bengal. Modeling Earth Syst Environ 8(2):1813–1823

  • Grafarend EW, Awange JL (2003) Nonlinear analysis of the three-dimensional datum transformation [conformal group C7(3)]. J Geod 77:66–76

    Article  Google Scholar 

  • Hamill TM, Whitaker JS, Snyder C (2001) Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon Weather Rev 129(11):2776–2790

    Article  Google Scholar 

  • Han JY (2010) Non-iterative approach for solving the indirect problems of linear reference frame transformations. J SurvEng 136(4):150–156

    Article  Google Scholar 

  • Han R, Tian XJ, Fu Y, Cai ZN (2015) Real-data assimilation experiment with a joint data assimilation system: assimilating carbon dioxide mole fraction measurements from the greenhouse gases observing satellite. Atmos Oceanic Sci Lett 9(2):107–113. https://doi.org/10.1080/16742834.2016.1133070

    Article  Google Scholar 

  • Hoteit I, Luo X, Pharm DT (2012) Particle Kalman filtering: a nonlinear Bayesian framework for ensemble Kalman filters. Mon Weather Rev 140(2):528–542

    Article  Google Scholar 

  • HuaienZeng QY, Yue W (2016) Iterative approach of 3D datum transformation with a non-isotropic weight. Acta Geod Geophys 2016(51):557–570. https://doi.org/10.1007/s40328-015-0144-2

    Article  Google Scholar 

  • Ivits E, Horion S, Fensholt R, Cherlet M (2014) Drought footprint on European ecosystems between 1999 and 2010 assessed by remotely sensed vegetation phenology and productivity. Glob Chang Biol 20(2):581–593. https://doi.org/10.1111/gcb.12393

    Article  Google Scholar 

  • Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer Series in Statistics. Springer, New York

  • Kallapur AG, Petersen IR, Anavatti SG (2009) A discrete-time robust extended Kalman filter for uncertain systems with sum quadratic constraints. IEEE Trans Autom Control 54(4):850–854

    Article  Google Scholar 

  • Kalra S, Kumar S, Routray A (2019) Simulation of heavy rainfall event along east coast of India using WRF modeling system: impact of 3DVAR data assimilation. Model Earth Syst Environ 5(1):245–256

    Article  Google Scholar 

  • Kalu I, Ndehedehe CE, Okwuashi O, Eyoh AE (2021a) Integration of satellite geodetic observations for regional geoid modeling using remove-compute-restore technique. Earth Sci Inf:1–19

  • Kalu I, Ndehedehe CE, Okwuashi O, Eyoh AE (2021b) Assessing freshwater changes over southern and Central Africa (2002–2017). Remote Sens 13(13):2543

  • Kalu I, Ndehedehe CE, Okwuashi O, Eyoh AE (2022a) Estimating the seven transformational parameters between two geodetic datums using the steepest descent algorithm of machine learning. Appl Comput Geosci 100086

  • Kalu I, Ndehedehe CE, Okwuashi O, Eyoh AE, Ferreira VG (2022b) A new modelling framework to assess changes in groundwater level. J Hydrol Reg Stud 43:101185

    Article  Google Scholar 

  • Kalu I, Ndehedehe CE, Okwuashi O, Eyoh AE (2022c) A comparison of existing transformation models to improve coordinate conversion between geodetic reference frames in Nigeria. Modeling Earth Syst Environ 8(1):611–624

  • Khaki M, Ait-El-Fquih B, Hoteit I, Forootan E, Awange J, Kuhn M (2017) A two-update ensemble Kalman filter for land hydrological data assimilation with an uncertain constraint. J Hydrol 555:447–462 ISSN 0022-1694. https://doi.org/10.1016/j.jhydrol.2017.10.032

    Article  Google Scholar 

  • Khaki M, Ait-El-Fquih B, Hoteit I, Forootan E, Awange J, Kuhn M (2018) Unsupervised ensemble Kalman filtering with an uncertain constraint for land hydrological data assimilation. J Hydrol 564:175–190, ISSN 0022–1694. https://doi.org/10.1016/j.jhydrol.2018.06.080

    Article  Google Scholar 

  • Koch DP, Wheeler DO, Beard RW, McLain TW, Brink KM (2020) Relative multiplicative extended Kalman filter for observable GPS-denied navigation. Int J Robot Res 39(9):1085–1121. https://doi.org/10.1177/0278364920903094

    Article  Google Scholar 

  • Lievens H, Reichle RH, Liu Q, De Lannoy GJM, Dunbar RS, Kim SB, Das NN, Cosh M, Walker JP, Wagner W (2017) Joint Sentinel-1 and SMAP data assimilation to improve soil moisture estimates. Geophys Res Lett 44:6145–6153. https://doi.org/10.1002/2017GL073904

    Article  Google Scholar 

  • Lu W, Atkinson DE, Newlands NK (2017) ENSO climate risk: predicting crop yield variability and coherence using cluster-based PCA. Model Earth Syst Environ 3(4):1343–1359

    Article  Google Scholar 

  • McLaughlin D (2002) An integrate approach to hydrologic data assimilation: interpolation, smoothing, and filtering. Adv Water Resour 25:12751286

    Article  Google Scholar 

  • Montazerolghaem M, Vervoort W, Minasny B, McBratney A (2016) Long-term variability of the leading seasonal modes of rainfall in South-Eastern Australia. Weather Climate Extremes 13:1–14. https://doi.org/10.1016/j.wace.2016.04.001

    Article  Google Scholar 

  • Ndehedehe C (2019) The water resources of tropical West Africa: problems, progress and prospect. Acta Geophysica 67(2):621–649. https://doi.org/10.1007/s11600-019-00260-y

    Article  Google Scholar 

  • Ndehedehe C, Agutu N, Okwuashi O, Ferreira VG (2016b) Spatio-temporal variability of droughts and terrestrial water storage over Lake Chad Basin using independent component analysis. J Hydrol 540:106–128. https://doi.org/10.1016/j.jhydrol.2016.05.068

    Article  Google Scholar 

  • Ndehedehe C, Awange J, Agutu N, Kuhn M, Heck B (2016a) Understanding changes in terrestrial water storage over West Africa between 2002 and 2014. Adv Water Resour 88:211–230. https://doi.org/10.1016/j.advwatres.2015.12.009

    Article  Google Scholar 

  • Ndehedehe CE, Awange J, Kuhn M, Agutu N, Fukuda Y (2017) Climate teleconnections influence on West Africa’s terrestrial water storage. Hydrol Process 31(18):3206–3224. https://doi.org/10.1002/hyp.11237

    Article  Google Scholar 

  • Obenson G, Fajemirokun FA (1979) UNIDOP-A Program to Strengthen (Through Doppler Observations) and Adjust Rigorously the Nigerian Geodetic Control Network. Geodetic Symp Satell Doppler Position 1:971

    Google Scholar 

  • Oyewusi AM (2008) A comparison of some transformation procedures for the nigerian geodetic network. Doctoral dissertation, School of Postgraduate Studies University of Lagos. Accessed on 14 Sept 2021

  • Poku-Gyamfi Y, Schueler T (2008) Renewal of Ghana’s geodetic reference network. 13th FIG symposium on deformation measurement and analysis, 4th IAG symposium on geodesy for geotechnical and structural engineering. LNEC, LISBON 2008:1–9

    Google Scholar 

  • Renzullo LJ, Van Dijk AIJM, Perraud JM, Collins D, Henderson B, Jin H, Smith AB, McJannet DL (2014) Continental satellite soil moisture data assimilation improves root-zone moisture analysis for water resources assessment. J Hydrol 519:2747–2762. https://doi.org/10.1016/j.jhydrol.2014.08.008

    Article  Google Scholar 

  • Rieser D, Kuhn M, Pail R, Anjasmara IM, Awange J (2010) Relation between GRACE-derived surface mass variations and precipitation over Australia. Aust J Earth Sci 57(7):887–900

    Article  Google Scholar 

  • Rubio JDJ, Pan Y, Pieper J, Chen MY, Sossa Azuela JH (2021) Advances in robots trajectories learning via fast neural networks. Front Neurorobot 15:29

    Article  Google Scholar 

  • Sarkar A, Das S, Dutta D (2019) Computation of skill of a mesoscale model in forecasting thunderstorm using radar reflectivity. Model Earth Syst Environ 5(2):443–454

    Article  Google Scholar 

  • Sharifi MA, Kariminejad MM (2020) A new approach for datum transformation based on ellipsoidal approximation and simultaneous estimation of the height correcting surface parameters. Iran J Geophys 14(2):49–61

    Google Scholar 

  • Shen YZ, Chen Y, Zheng DH (2006) A quaternion-based geodetic datum transformation algorithm. J Geod 80:233–239

    Article  Google Scholar 

  • Simon D (2006) Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley & Sons

  • Simon D,  Chia TL (2002) Kalman filtering with state equality constraints. IEEE transactions on Aerospace and Electronic Systems 38(1):128–136

  • Slater AG, Clark MP (2006) Snow data assimilation via an ensemble KalmanFilter.J. Hydrometer. 7:478–493. https://doi.org/10.1175/JHM505.1

    Article  Google Scholar 

  • Soriano, LA, Zamora, E, Vazquez-Nicolas, JM, Hernández, G, Madrigal, JAB, Balderas, D (2020) PD control compensation based on a Cascade neural network applied to a robot manipulator. Front Neurorobot 14:577749

  • Sun L, Nistor I, Seidou O (2015) Streamflow data assimilation in SWAT model using extended Kalman filter. J Hydrol 531:671–684

    Article  Google Scholar 

  • Tangdamrongsub N, Steele-Dunne SC, Gunter BC, Ditmar PG, Sutanudjaja EH, Xie T, Wang Z (2017) Improving estimates of water resources in a semi-arid region by assimilating GRACE data into the PCR-GLOBWB hydrological model. Hydrol Earth Syst Sci 21:2053–2074

    Article  Google Scholar 

  • Tian S, Renzullo LJ, Pipunic RC, Lerat J, Sharples W, Donnelly C (2021) Satellite soil moisture data assimilation for improved operational continental water balance prediction. Hydrol Earth Syst Sci 25(8):4567–4584

  • Tian S, Tregoning P, Renzullo LJ, van Dijk AI, Walker JP, Pauwels VR, Allgeyer S (2017) Improved water balance component estimates through joint assimilation of GRACE water storage and SMOS soil moisture retrievals. Water Resou Res 53(3):1820–1840

  • van Dijk AIJM, Renzullo LJ, Wada Y, Tregoning P (2014) A global water cycle reanalysis (20032012) merging satellite gravimetry and altimetry observations with a hydrological multi-model ensemble. Hydrol Earth Syst Sci 18:29552973. https://doi.org/10.5194/hess-18-2955-2014

    Article  Google Scholar 

  • Vargas DM (2021) Superpixels extraction by an intuitionistic fuzzy clustering algorithm. J Appl Res Technol 19(2):140–152

    Article  Google Scholar 

  • Vrugt, JA, Ter Braak, CJF, Diks, CGH, Schoups, G, (2013) Advancing hydrologic data assimilation using particle Markov chain Monte Carlo simulation: theory, concepts and applications. Advances in Water Resources, Anniversary Issue – 35 Years, 51, 457–478, https://doi.org/10.1016/j.advwatres.2012.04.002

  • Westra S, Brown C, Lall U, Koch I, Sharma A (2010) Interpreting variability in global SST data using independent component analysis and principal component analysis. Int J Climatol 30(3):333–346. https://doi.org/10.1002/joc.1888

    Article  Google Scholar 

  • Wonnacott R (2007) A progress report on the AFREF project and its potential to support development in Africa. Space geodesy workshop, Matjiesfontein, 13–14 November. https://geodesy.hartrao.ac.za/pastevents/workshop2/Wonnacott_AFREF.pdf. Accessed 16 Sept 2021

  • Yang Y (1999) Robust estimation of geodetic datum transformation. J Geod 73:268–274

    Article  Google Scholar 

  • Zaitchik BF, Rodell M, Reichle RH (2008) Assimilation of GRACE terrestrial water storage data into a land surface model: results for the Mississippi River basin. J Hydrometeorol 9(3):535548. https://doi.org/10.1175/2007JHM951.1

    Article  Google Scholar 

  • Zeng HE, Yi QL (2010) A new analytical solution of nonlinear geodetic datum transformation. In: Proceedings of the 18th international conference on geoinformatics. https://doi.org/10.1109/GEOINFORMATICS.2010.5568048

  • Zhang J, Campbell JR, Hyer EJ, Reid JS, Westphal DL, Johnson RS (2014) Evaluating the impact of multisensor data assimilation on a global aerosol particle transport model. J Geophys Res Atmos 119:4674–4689. https://doi.org/10.1002/2013JD020975

    Article  Google Scholar 

  • Ziehe A, (2005) Blind source separation based on joint diagonalization of matrices with applications in biomedical signal processing. PhD thesis, Universitat Potsdam. Retrieved from: https://en.youscribe.com/ http://en.youscribe.com/catalogue/reports-and-theses/knowledge/blind-source-separation-based-on-jointdiagonalization-of-matrices-1424347. Accessed 1 December 2020

Download references

Acknowledgments

The authors are grateful to the office of the surveyor general of Nigeria (OSGOF), and the department of geoinformatics and surveying, University of Uyo, for all the data used in this study.

Author information

Authors and Affiliations

Authors

Contributions

Ikechukwu Kalu: Writing – original draft, Writing – review & editing, Methodology, Formal analysis, Conceptualization, Investigation, Software. Christopher E. Ndehedehe: Conceptualization, Writing – original draft, Writing – review & editing, Supervision, Software. Onuwa Okwuashi: Conceptualization, Writing – review & editing, Formal analysis. Aniekan Eyoh: Resources. Vagner G. Ferreira: Conceptualization, Writing – review & editing, Formal analysis.

Corresponding author

Correspondence to Christopher E. Ndehedehe.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by: H. Babaie

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalu, I., Ndehedehe, C.E., Okwuashi, O. et al. Geodetic first order data assimilation using an extended Kalman filtering technique. Earth Sci Inform 15, 2585–2599 (2022). https://doi.org/10.1007/s12145-022-00869-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-022-00869-6

Keywords

Navigation