Skip to main content

Advertisement

Log in

A multiscale 3D convolution with context attention network for hyperspectral image classification

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Deep learning, especially 3D convolutional neural networks (CNNs), has been proved to be an excellent feature extractor in the hyperspectral image (HSI) classification. However, simply accumulating conventional 3D convolution units and blindly increasing the depth of the network does not improve the model performance effectively. Besides, most deep learning models tend to struggle due to the serious overfitting problem under the condition of small sample, this seriously restricts the accuracy of model classification. To solve the abovementioned problems, we proposed a multiscale 3D convolution with context attention network for HSI classification. Specifically, we introduce a multiscale 3D convolution composed of convolution kernels of different sizes to replace the conventional 3D convolution to enlarge the receptive field and adaptively detect the HSI features in different scales. Then, based on multiscale 3D convolution, we build two subnetworks to efficiently exploit hierarchical spectral and spatial features respectively, and enhance the transmission of features. Finally, to explore the discriminative features further, we design two types of attention mechanisms (AM) to build compact relationships between each position\channel and aggregation center instead of model any position\channel and position\channel relationships. After each 3D convolution layer, a compact AM is adopted to refine extracted hierarchical spectral and spatial features respectively, and boost the performance of the model. Experiments were conducted on four benchmark HSI datasets, the results demonstrate that the proposed method outperforms state-of-the-art models with the overall accuracy of 96.39%, 97.83%, 98.58%, and 97.98% over Indian Pines, Salinas Valley, Pavia University and Botswana dataset, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

Download references

Funding

This work was supported in part by the Research Foundation of Education Department of Sichuan Province under grant no. 14ZB0282, and in part by the Research Foundation of Yibin University under grant no. 2019PY37.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huajun Wang.

Ethics declarations

Conflicts of interests

The authors declare no conflict of interest.

Additional information

Communicated by H. Babaie.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Wang, H. & Zhang, T. A multiscale 3D convolution with context attention network for hyperspectral image classification. Earth Sci Inform 15, 2553–2569 (2022). https://doi.org/10.1007/s12145-022-00858-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-022-00858-9

Keywords

Navigation