Skip to main content

Capability of an Elman Recurrent Neural Network for predicting the non-linear behavior of airborne pollutants

Abstract

In this work an Elman Recurrent Neural Network (a type of Simple Recurrent Neural Network) is used for predicting the concentration of airborne pollutants O3, PM2.5 and PM10, which have a non-linear behavior, using data from Red Auto´ma´tica de Monitoreo Atmosfe´rico (RAMA), which is spreaded in the Zona Metropolitana del Valle de Me´xico (ZMVM). The study of PM10 and PM2.5 is important because, due to their tiny size, they can penetrate sensitive regions of respiratory system, among other important effects on human health, furthermore, it has been demonstrated that these have an important environmental impact. The study of ozone is important due its high toxicity. This pollutant has been responsible of several environmental contingences in Mexico City. An empirical method for imputing missing data using a series of linear regressions is proposed. A grid searching is used to find the best combination of some hyperparameters so that the variation of root-mean-square error between validation data and predicted data is minimized. A total of 144 experiments is developed measuring the validation root-mean-square error for each one, as well as root- mean-square error variation, in order to find the optimal combination. Two criteria are taken into account to evaluate the performance of network: root-mean-square error variation as mentioned before and evolution of metric values. This network showed a very good performance for ozone, with a maximum accuracy of 95.6 %, moderately good for PM2.5 with 46.4 and 28.6 % for PM10.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. 1.

    Data available in http://www.aire.cdmx.gob.mx/.

References

  1. Aggarwal CC (2018) Neural Networks and deep learning: a textbook. Springer, Berlin. https://doi.org/10.1007/978-3-319-94463-0

  2. Becerra-Rico J, Aceves-Ferna´ndez MA, Esquivel-Escalante K, Pedraza-Ortega JC (2020) Airborne particle pollution predictive model using Gated Recurrent Unit (GRU) deep neural networks. Earth Sci Inform 13(3):821–834. https://doi.org/10.1007/s12145-020-00462-9

  3. Brownlee J, (2020), Time series prediction with LSTM Recurrent Neural Networks in Python with Keras. https://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras. Accessed 11 Apr 2021

  4. Brunekreef B, Holgate ST (2002) Air pollution and health. Lancet 360(9341):1233–1242. https://doi.org/10.1016/S0140-6736(02)11274-8

    Article  Google Scholar 

  5. Brunelli U, Piazza V, Pignato L, Sorbello F, Vitabile S (2008) Three hours ahead prevision of SO2 pollutant concen-tration using an Elman neural based forecaster [Indoor air (2005) Modeling, Assessment, and control of indoor air quality]. Build Environ 43(3):304–314. https://doi.org/10.1016/j.buildenv.2006.05.011

  6. Chollet F (2018) Understanding recurrent neural networks. Deep learning with python. Manning Publications, p 196

  7. Elman JL (1990) Finding structure in time. Cogn Sci. https://doi.org/10.1207/s15516709cog1402_1

    Article  Google Scholar 

  8. Elsner M, Goldwater S, Feldman N, Wood F (2013) A Joint learning model of word segmentation, lexical acquisition, and phonetic, variability. Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, 42–54

  9. EPA (2021) Health and environmental. Effects of Particulate Matter (PM). https://www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm. Acceased 14 May 2021

  10. Gaceta oficial de la CDMX (2019) O´rgano de Difusio´n del Gobierno de la Ciudad de Me´xico. http://www.aire.cdmx.gob.mx/descargas/ultima-hora/calidad-aire/pcaa/Gaceta_Oficial_CDMX.pdf. Accessed 10 May 2021

  11. Goodfellow IJ, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge

  12. Gregor K, Danihelka I, Graves A, Rezende DJ, Wierstra D (2015) DRAW: A Recurrent Neural Network for image generation. Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37, 1462–1471

  13. Hasson U, Nastase SA, Goldstein A (2020) Direct fit to nature. An evolutionary perspective on biological and artificial neural networks. Neuron 105(3):416–434. https://doi.org/10.1016/j.neuron.2019.12.002

  14. Hu¨sken M, Stagge P (2003) Recurrent neural networks for time series classification. Neurocomputing 50:223–235. https://doi.org/10.1016/S0925-2312(01)00706-8

    Article  Google Scholar 

  15. INECC(1997) 4. Calidad del Aire de la Zona Metropolitana del Valle de México. http://www2.inecc.gob.mx/publicaciones2/libros/113/cap4.html. Accessed 8 May 2021

  16. Jain LC, Medsker LR (1999) Recurrent Neural Networks: Design and applications, 1st. CRC Press, Inc, Boca Raton

  17. Jia W, Zhao D, Shen T, Tang Y, Zhao Y (2014) Study on optimized Elman Neural Network Classification Algorithm Based on PLS and CA. Comput Intell Neurosci 2014:724317. https://doi.org/10.1155/2014/724317

  18. Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E (2020) Environmental and health impacts of air pollution: a review. Front Public Health 8:14. https://doi.org/10.3389/fpubh.2020.00014

  19. Miller DB, Ghio AJ, Karoly ED, Bell LN, Snow SJ, Madden MC, Soukup J, Cascio, WE, Gilmour, MI, Kodavanti, UP et al (2016) Ozone exposure increases circulating stress hormones and lipid metabolites in humans. Am J Respir Crit Care Med 193(12):1382–1391. https://doi.org/10.1164/rccm.201508-1599oc

  20. Navarro-Arredondo A (2019) Control de la contaminacio´n atmosfe´rica en la Zona Metropolitana del Valle de Me´xico Estud Demogr Urbanos 34(3):631–663. https://doi.org/10.24201/edu.v34i3.1806

  21. Oprea M, Matei A (2010) The Neural Network-Based forecasting in environmental systems. WSEAS Trans Syst Ctrl 5(12):893–901

  22. Probst P, Bischl B, Boulesteix AL (2018) Tunability: Importance of hyperparameters of machine learning algorithms

  23. QBI (2021) Axons: The cable transmission of neurons. https://qbi.uq.edu.au/brain/brain-anatomy/axons-cable-transmission-neurons. Accesed 10 May 2021

  24. Ram´ırez Montan˜ez JA, Aceves Fernandez MA, Tovar Arriaga S, Ramos Arreguin, JM, Salini Calderon GA (2019) Evaluation of a Recurrent Neural Network LSTM for the detection of exceedances of particles PM10 (2019) 16th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 1–6. https://doi.org/10.1109/ICEEE.2019.8884516

  25. Sak H, Senior A, Rao K, Beaufays F (2015) Fast and accurate recurrent neural network acoustic models for speech recognition. Interspeech. https://doi.org/10.21437/interspeech.2015-350

  26. Sa´nchez AB, Ordo´n˜ez C, Lasheras FS, de Cos Juez FJ, Roca-Pardiñas J (2013) Forecasting SO2 pollution incidents by means of Elman Artificial Neural Networks and Models ARIMA. Abstr Appl Anal 2013:238259. https://doi.org/10.1155/2013/238259

  27. Stevens E, Antiga L, Viehmann T, Chintala S (2020) Deep learning with Pytorch. Manning Publications, Shelter Island

  28. Svozil D, Kvasnicka V, Pospichal J (1997) Introduction to multi-layer feed-forward neural networks. Chemom Intell Lab Syst 39(1):43–62. https://doi.org/10.1016/S0169-7439(97)00061-0

  29. Wang J, Wang J, Fang W, Niu H (2016) Financial time series prediction using Elman Recurrent Random Neural Networks. Comput Intell Neurosci 2016:4742515. https://doi.org/10.1155/2016/4742515

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marco A. Aceves-Fernández.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by H. Babaie.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barrero-González, D., Ramírez-Montañez, J.A., Aceves-Fernández, M.A. et al. Capability of an Elman Recurrent Neural Network for predicting the non-linear behavior of airborne pollutants. Earth Sci Inform (2021). https://doi.org/10.1007/s12145-021-00707-1

Download citation

Keywords

  • Artificial Neural Networks
  • Airborne pollutant
  • Time series
  • Grid searching
  • Imputation of missing data