Skip to main content

Prediction of urban water accumulation points and water accumulation process based on machine learning

A Correction to this article was published on 23 October 2021

This article has been updated

Abstract

With the development of urbanization, global warming, rain island effect and other factors, cities around the world are facing more frequent and intense flood events. In order to deal with the damage caused by urban flood effectively, it is increasingly important to accurately predict and characterize the information of the flood in cities. In recent years, the rise of machine learning methods provides a new technical means for flood prediction. In this study, Naive Bayes (NB) and Random Forest (RF) algorithm were used to forecast the waterlogging point and the waterlogging process at the waterlogging point respectively to achieve the goal of predicting the whole process of urban waterlogging. Compared with the actual result, the four evaluation indexes (P, R, A and F1) of the NB classification models are 91%, 90.5%, 98.9% and 90.7% respectively, and the three regression indexes (MAE, MRER and RMSE) of the RF regression model were respectively 0.95%, 9.53% and 1.21%. The results demonstrated that the prediction result of NB model for waterlogging point is reliable, and the process of waterlogging predicted by RF model is also consistent with the actual situation, which verify the validity and applicability of the NB model and RF model. This research is expected to provide scientific guidance and theoretical support for urban flood disaster mitigation and relief work.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Change history

References

  1. Bhan SK, Team F (2001) Study of floods in West Bengal during september, 2000 using indian remote sensing satellite data. J Indian Soc Remote 29:1–2. https://doi.org/10.1007/bf02989907

    Article  Google Scholar 

  2. Bisht DS, Chatterjee C, Kalakoti S, Upadhyay P, Sahoo M, Panda A (2016) Modeling urban floods and drainage using SWMM and MIKE URBAN: a case study. Nat Hazards 84(2):749–776. https://doi.org/10.1007/s11069-016-2455-1

    Article  Google Scholar 

  3. Braud I, Breil P, Thollet F, Laagouy M, Branger F, Jacqueminet C, Kermadi S, Michel K (2013) Evidence of the impact of urbanization on the hydrological regime of a medium-sized periurban catchment in France. J Hydrol 485:5–23. https://doi.org/10.1016/j.jhydrol.2012.04.049

    Article  Google Scholar 

  4. Breiman L (2001) Random forests. Mach Learn 45(1):5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  5. Bubeck P, Aerts JCJH, de Moel H, Kreibich H (2016) Preface: flood-risk analysis and integrated management. Nat Hazard Earth Syst Sci 16(4):1005–1010. https://doi.org/10.5194/nhess-16-1005-2016

    Article  Google Scholar 

  6. Chang H, Lafrenz M, Jung IW, Figliozzi M, Platman D, Pederson C (2010) Potential impacts of climate change on flood-induced travel disruptions: a case study of Portland, Oregon, USA. Annal Assoc Am Geogr 100(4):938–952. https://doi.org/10.1080/00045608.2010.497110

    Article  Google Scholar 

  7. Chen XW, Liu M (2006) Prediction of protein-protein interactions using random decision forest framework. Bioinformatics 21(24):4394–4400. https://doi.org/10.1093/bioinformatics/bti721

    Article  Google Scholar 

  8. Cheng T, Xu ZX, Hong SY, Song SL (2017) Flood risk zoning by using 2D hydrodynamic modeling: a case study in Jinan City. Math Probl Eng 2017:5659197. https://doi.org/10.1155/2017/5659197

    Article  Google Scholar 

  9. Choubin B, Moradi E, Golshan M, Adamowski J, Sajedi-Hosseini F, Mosavi A (2019) An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci Total Environ 651:2087–2096. https://doi.org/10.1016/j.scitotenv.2018.10.064

    Article  Google Scholar 

  10. Dalziell E, Nicholson A (2001) Risk and impact of natural hazards on a road network. J Transp Eng 127(2):159–166. https://doi.org/10.1061/(ASCE)0733-947X(2001)127:2(159)

    Article  Google Scholar 

  11. Diaz-Nieto J, Lerner DN, Saul AJ, Blanksby J (2012) GIS water-balance approach to support surface water flood-risk management. J Hydrol Eng 17(1):55–67. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000416

    Article  Google Scholar 

  12. Ding YK, Zhu YL, Feng J, Zhang PC, Cheng ZR (2020) Interpretable spatio-temporal attention LSTM model for flood forecasting. Neurocomputing 403:348–359. https://doi.org/10.1016/j.neucom.2020.04.110

    Article  Google Scholar 

  13. EM-DAT 2020. Disaster profiles. https://www.emdat.be/emdat_db/. Accessed 9 March 2020

  14. Ferreira CSS, Walsh RPD, Shakesby RA, Keizer JJ, Soares D, Gonz á lez-Pelayo O, Coelho COA, Ferreira AJD (2016) Differences in overland flow, hydrophobicity and soil moisture dynamics between Mediterranean woodland types in a peri-urban catchment in Portugal. J Hydrol 533:473–485. https://doi.org/10.1016/j.jhydrol.2015.12.040

    Article  Google Scholar 

  15. Gain AK, Hoque MM (2013) Flood risk assessment and its application in the eastern part of Dhaka City, Bangladesh. J Flood Risk Manag 6(3):219–228. https://doi.org/10.1111/jfr3.12003

    Article  Google Scholar 

  16. GebreEgziabher M, Demissie Y (2020) Modeling urban flood inundation and recession impacted by manholes. Water 12(4):1160. https://doi.org/10.3390/w12041160

    Article  Google Scholar 

  17. Gislason PO, Benediktsson JA, Sveinsson JR (2006) Random forests for land cover classification. Pattern Recogn Lett 27(4):294–300. https://doi.org/10.1016/j.patrec.2005.08.011

    Article  Google Scholar 

  18. Granata F, Gargano R, Marinis G (2016) Support vector regression for rainfall-runoff modeling in urban drainage: a comparison with the EPA’s storm water management model. Water 8(3):69. https://doi.org/10.3390/w8030069

    Article  Google Scholar 

  19. Guo XJ, Zhang CC, Luo WR, Yang J, Yang M (2020) Urban impervious surface extraction based on multi-features and random forest. IEEE Access 8:226609–226623. https://doi.org/10.1109/ACCESS.2020.3046261

    Article  Google Scholar 

  20. Hajat S, Ebi KL, Kovats S, Menne B, Edwards S, Haines A (2003) The human health consequences of flooding in Europe and the implications for public health. Appl Environ Sci Public Health 1(1):13–21

    Google Scholar 

  21. Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S, Kim H, Kanae S (2013) Global flood risk under climate change. Nat Clim Chang 3(9):816–821. https://doi.org/10.1038/nclimate1911

    Article  Google Scholar 

  22. Huong HTL, Pathirana A (2013) Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam. Hydrol Earth Syst Sci 17(1):379–394. https://doi.org/10.5194/hess-17-379-2013

    Article  Google Scholar 

  23. IPCC (2014). In: Core Writing Team, Pachauri RK, Meyer LA (eds) Climate Change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, p 151

  24. Jamshed A, Birkmann J, McMillan JM, Rana IA, Feldmeyer D, Sauter H (2021) How do rural-urban linkages change after an extreme flood event? Empirical evidence from rural communities in Pakistan. Sci Total Environ 705:141462. https://doi.org/10.1016/j.scitotenv.2020.141462

    Article  Google Scholar 

  25. Jhong BC, Wang JH, Lin GF (2016) Improving the long lead-time inundation forecasts using effective typhoon characteristics. Water Resour Manag 30(12):4247–4271. https://doi.org/10.1007/s11269-016-1418-3

    Article  Google Scholar 

  26. Jing WL, Zhang PY, Zhao XD, Yang YP, Jiang H, Xu JH, Yang J, Li Y (2020) Extending GRACE terrestrial water storage anomalies by combining the random forest regression and a spatially moving window structure. J Hydrol 590:125239. https://doi.org/10.1016/j.jhydrol.2020.125239

    Article  Google Scholar 

  27. Jongman B (2018) Effective adaptation to rising flood risk COMMENT. Nat Commun 9:1986. https://doi.org/10.1038/s41467-018-04396-1

    Article  Google Scholar 

  28. Kabir E, Guikema S, Kane B (2018) Statistical modeling of tree failures during storms. Reliab Eng Syst Safe 177:68–79. https://doi.org/10.1016/j.ress.2018.04.026

    Article  Google Scholar 

  29. Kim HI, Han KY (2020) Data-driven approach for the rapid simulation of urban flood prediction. KSCE J Civ Eng 24(6):1932–1943. https://doi.org/10.1007/s12205-020-1304-7

    Article  Google Scholar 

  30. Kong FH, Ban YL, Yin HW, James P (2017) Modeling stormwater management at the city district level in response to changes in land use and low impact development. Environ Modell Softw 95:132–142. https://doi.org/10.1016/j.envsoft.2017.06.021

    Article  Google Scholar 

  31. LA Lee S, Kouzania AZ, Hu EJ (2010) Random forest based lung nodule classification aided by clustering. Comput Med Imag Grap 34(7):535–542. https://doi.org/10.1016/j.compmedimag.2010.03.006

    Article  Google Scholar 

  32. Li W, Niu L, Chen H, Wu H (2020) Robust downscaling method of land surface temperature by using random forest algorithm. J Geo-Inf Sci 22(8):1666–1678. https://doi.org/10.12082/dqxxkx.2020.190142

    Article  Google Scholar 

  33. Liu J, Sun SQ, Tan ZL, Liu Y (2020) Nondestructive detection of sunset yellow in cream based on near-infrared spectroscopy and interval random forest. Spectrochim Acta A 242:118718. https://doi.org/10.1016/j.saa.2020.118718

    Article  Google Scholar 

  34. Loperfideo JV, Noe GB, Jarnagic ST, Hogan DM (2014) Effects of distributed and centralised stormwater best management practices and land cover on urban stream hydrology at the catchment scale. J Hydrol 519:2584–2595. https://doi.org/10.1016/j.jhydrol.2014.07.007

    Article  Google Scholar 

  35. Lou WC, Wang XQ, Chen F, Chen YX, Jiang B, Zhang H (2014) Sequence based prediction of DNA-binding proteins based on hybrid feature selection using random forest and gaussian Naive bayes. PLoS ONE 9(1):e86703. https://doi.org/10.1371/journal.pone.0086703

    Article  Google Scholar 

  36. Malekipirbazari M, Aksakalli V (2015) Risk assessment in social lending via random forests. Expert Syst Appl 42(10):4621–4631. https://doi.org/10.1016/j.eswa.2015.02.001

    Article  Google Scholar 

  37. Miller JD, Kim H, Kjeldsen TR, Packman J, Grebby S, Dearden R (2014) Assessing the impact of urbanization on storm runoff in a peri-urban catchment using historical change in impervious cover. J Hydrol 515:59–70. https://doi.org/10.1016/j.jhydrol.2014.04.011

    Article  Google Scholar 

  38. Mu DR, Luo PP, Lyu J, Zhou MM, Huo AD, Duan WL, Nover D, He B, Zhao XL (2020) Impact of temporal rainfall patterns on flash floods in Hue City, Vietnam. J Flood Risk Manag 14(1):e12668. https://doi.org/10.1111/jfr3.12668

    Article  Google Scholar 

  39. Nourani V, Alami MT, Aminfar MH (2009) A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng Appl Artif Intell 22(3):466–472. https://doi.org/10.1016/j.engappai.2008.09.003

    Article  Google Scholar 

  40. Omran S, El Houby EMF (2020) Prediction of electrical power disturbances using machine learning techniques. J Ambient Intel Hum Comp 11(7):2987–3003. https://doi.org/10.1007/s12652-019-01440-w

    Article  Google Scholar 

  41. Parkhurst DF, Brenner KP, Dufour AP, Wymer LJ (2005) Indicator bacteria at five swimming beaches—analysis using random forests. Water Res 39(7):1354–1360. https://doi.org/10.1016/j.watres.2005.01.001

    Article  Google Scholar 

  42. Patil HP, Atique M (2020) CDNB: CAVIAR-dragonfly optimization with Naive bayes for the sentiment and affect analysis in social media. Big Data 8(2):107–124. https://doi.org/10.1089/big.2019.0130

    Article  Google Scholar 

  43. Patro S, Chatterjee C, Mohanty S, Singh R (2009) Flood inundation modeling using MIKE FLOOD and remote sensing data. J Indian Soc Remote 37(1):107–118. https://doi.org/10.1007/s12524-009-0002-1

    Article  Google Scholar 

  44. Perez A, Larranaga P, Inza I (2009) Bayesian classifiers based on kernel density estimation: flexible classifiers. Int J Approx Reason 50(2):341–362. https://doi.org/10.1016/j.ijar.2008.08.008

    Article  Google Scholar 

  45. Prajwala TR (2015) A comparative study on decision tree and random forest using R tool. IJARCCE 4(1):4

    Google Scholar 

  46. Pregnolato M, Ford A, Glenis V, Wilkinson S, Dawson R (2017) Impact of climate change on disruption to urban transport networks from pluvial flooding. J Infrastruct Syst 23(4):04017015. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000372

    Article  Google Scholar 

  47. Rahmati O, Darabi H, Panahi M, Kalantari Z, Naghibi SA, Ferreira CSS, Kornegady A, Karimidastenaei Z, Mohamadi F, Stefanidis S, Bui DT, Haghighi AT (2020) Development of novel hybridized models for urban flood susceptibility mapping. Sci Rep 10(1):12937. https://doi.org/10.1038/s41598-020-69703-7

    Article  Google Scholar 

  48. Schmitt TG, Thomas M, Ettrich N (2004) Analysis and modeling of flooding in urban drainage systems. J Hydrol Eng 299(3–4):300–311. https://doi.org/10.1016/j.jhydrol.2004.08.012

    Article  Google Scholar 

  49. She L, You XY (2019) A dynamic flow forecast model for urban drainage using the coupled artificial neural network. Water Resour Manag 33(9):3143–3153. https://doi.org/10.1007/s11269-019-02294-9

    Article  Google Scholar 

  50. Smith A, Sterba-Boatwright B, Mott J (2010) Novel application of a statistical technique, random forests, in a bacterial source tracking study. Water Res 44(14):4067–4076. https://doi.org/10.1016/j.watres.2010.05.019

    Article  Google Scholar 

  51. Vafakhah M, Loor SMH, Pourghasemi H, Katebikord A (2020) Comparing performance of random forest and adaptive neuro-fuzzy inference system data mining models for flood susceptibility mapping. Arab J Geosci 13(11):417. https://doi.org/10.1007/s12517-020-05363-1

    Article  Google Scholar 

  52. Vojinovic Z, Tutulic D (2009) On the use of 1D and coupled 1D–2D modelling approaches for assessment of flood damage in urban areas. Urban Water J 6(3):183–199. https://doi.org/10.1080/15730620802566877

    Article  Google Scholar 

  53. Wang X, Kruger U, Irwin GW (2005) Process monitoring approach using fast moving window PCA. Ind Eng Chem Res 44(15):5691–5702. https://doi.org/10.1021/ie048873f

    Article  Google Scholar 

  54. Ward R (1978) Floods: a geographical perspective. MacMillan, London

    Book  Google Scholar 

  55. Wu XS, Wang ZL, Guo SL, Liao WL, Zeng ZY, Chen XH (2017) Scenario-based projections of future urban inundation within a coupled hydrodynamic model framework: a case study in Dongguan City, China. J Hydrol 547:428–442. https://doi.org/10.1016/j.jhydrol.2017.02.020

    Article  Google Scholar 

  56. Wu ZN, Zhou YH, Wang HL (2020a) Real-time prediction of the water accumulation process of urban stormy accumulation points based on deep learning. IEEE Access 8:151938–151951. https://doi.org/10.1109/ACCESS.2020.3017277

    Article  Google Scholar 

  57. Wu ZN, Zhou YH, Wang HL, Jiang ZH (2020b) Depth prediction of urban flood under different rainfall return periods based on deep learning and data warehouse. Sci Total Environ 716:137077. https://doi.org/10.1016/j.scitotenv.2020.137077

    Article  Google Scholar 

  58. White MD, Greer KA (2006) The effects of watershed urbanization on the stream hydrology and riparian vegetation of Los Penasquitos Creek, California. Landsc Urban Plan 74(2):125–138. https://doi.org/10.1016/j.landurbplan.2004.11.015

    Article  Google Scholar 

  59. Yazdi J, Neyshabouri SAAS (2012) A simulation-based optimization model for flood management on a watershed scale. Water Resour Manag 26(15):4569–4586. https://doi.org/10.1007/s11269-012-0167-1

    Article  Google Scholar 

  60. Yazdi MN, Ketabchy M, Sample DJ, Scott D, Liao HH (2019) An evaluation of HSPF and SWMM for simulating streamflow regimes in an urban watershed. Environ Modell Softw 118:211–225. https://doi.org/10.1016/j.envsoft.2019.05.008

    Article  Google Scholar 

  61. Zhang S, Li Z (2019) Simulation of urban rainstorm waterlogging and pipeline network drainage process based on swmm. J Phys 1213:052061. https://doi.org/10.1088/1742-6596/1213/5/052061

    Article  Google Scholar 

  62. Zhao DQ, Chen JN, Wang HZ, Tong QY, Cao SB, Sheng Z (2009) GIS-based urban rainfall-runoff modeling using an automatic catchment-discretization approach: a case study in Macau. Environ Earth Sci 59(2):465–472. https://doi.org/10.1007/s12665-009-0045-1

    Article  Google Scholar 

  63. Zolch T, Henze L, Keilholz P, Pauleit S (2017) Regulating urban surface runoff through nature-based solutions—an assessment at the micro-scale. Environ Res 157:135–144. https://doi.org/10.1016/j.envres.2017.05.023

    Article  Google Scholar 

  64. Zoppou C (2001) Review of urban storm water models. Environ Modell Softw 16(3):195–231. https://doi.org/10.1016/S1364-8152(00)00084-0

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their valuable comments. They declare that there is no conflict of interest regarding the publication of this paper.

Funding

The study was funded by the Key Project of National Natural Science Foundation of China (No: 51739009), Natural Science Foundation of China (51879242), Science and Technology Innovation Talents Project of Henan Education Department of China (21HASTIT011), Young backbone Teachers Training Fund of Henan Education Department of China (2020GGJS005), and Excellent Youth Fund of Henan Province of China(212300410088).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Huiliang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The Family name of Yihong has been changed from Zhu to Zhou.

Communicated by H. Babaie

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhao, Y., Zhou, Y. et al. Prediction of urban water accumulation points and water accumulation process based on machine learning. Earth Sci Inform (2021). https://doi.org/10.1007/s12145-021-00700-8

Download citation

Keywords

  • Urban flood
  • Naive Bayes classification model
  • Random forest regression model
  • Waterlogging points prediction
  • Real-time depth prediction