Skip to main content

Investigation and zoning of geo-environmental risk around the western edge of Khareshk village's oil transmission line, Iran

Abstract

In this study, for the first time in Iran and especially in the northern regions of the country, risk assessment was performed in oil transmission lines. For this purpose, a combined approach based on the analytical hierarchy process (AHP) and fuzzy methods were used. Based on this and in the first stage, eight main criteria of distance from the oil transmission line, distance from faults, distance from springs, slope percentage, aspect, geo units, distance from landslide and creep, and stream density were identified. In the second stage, using the AHP method, the research problem became hierarchical. In the third stage, by performing pairwise comparisons between the categories of the main criteria, weights and incompatibility coefficients were obtained for each pair of comparisons. Finally, for the weighted maps' overlay, a fuzzy overlay function in the ArcGIS software was used. According to the final map, 9.39% of the area is in the "very high" risk category and 21.95% in the "high" category. Accordingly, the southern areas of the study area have the highest risk levels, and the southern and eastern areas of the mine located in the study area need more attention and review of the method of extraction from the mine.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Aalipour Erdi M, Malekmohammadi B, Jafari HR (2017) Risk zoning of land subsidence due to groundwater level declining using fuzzy analytical hierarchy process. Iran J Watershed Manag Sci Eng 11:25–34. http://jwmsei.ir/article-1-341-en.html. Accessed 11 Nov 2020

  2. Abass K (2020) Rising incidence of urban floods: understanding the causes for flood risk reduction in Kumasi, Ghana. GeoJ 2020. https://doi.org/10.1007/s10708-020-10319-9

  3. Abass SA, Mervat ZS, Abdallah AS (2011) Integer programming model for Generation Expansion Planning problem under fuzzy environment. Int J Manag Sci Eng Manag 6:323–327. https://doi.org/10.1080/17509653.2011.10671180

    Article  Google Scholar 

  4. ALOS (2020) ALOS PALSAR satellite data, Alaska Satellite Facility. https://search.asf.alaska.edu/#/?zoom=13&center=49.475909,36.844425&polygon=POLYGON((-105.4041%2045.4288,-86.5955%2045.4288,-86.5955%2049.0086,-105.4041%2049.0086,-105.4041%2045.4288))&view=equitorial&dataset=ALOS. Accessed 11 Nov 2020

  5. Araya-MuñozMetzger DMJ, Stuart N, Wilson AMW, Carvajal D (2017) A spatial fuzzy logic approach to urban multi-hazard impact assessment in Concepción, Chile. Sci Total Environ 576:508–519. https://doi.org/10.1016/j.scitotenv.2016.10.077

    Article  Google Scholar 

  6. Arca D, Kutoğlu HŞ, Becek K (2018) Landslide susceptibility mapping in an area of underground mining using the multicriteria decision analysis method. Environ Monit Assess 190:1–14. https://doi.org/10.1007/s10661-018-7085-5

    Article  Google Scholar 

  7. Augusto Filho O, Hirai JN, Oliveira AS, Liotti ES (2010) GIS applied to geotechnical and environmental risk management in a Brazilian oil pipeline. Bull Eng Geol Environ 69:631–641. https://doi.org/10.1007/s10064-010-0310-2

    Article  Google Scholar 

  8. Baharvand S, Rahnamarad J, Soori S, Saadatkhah N (2020) Landslide susceptibility zoning in a catchment of Zagros Mountains using fuzzy logic and GIS. Environ Earth Sci 79:204. https://doi.org/10.1007/s12665-020-08957-w

    Article  Google Scholar 

  9. Bahrami Y, Hassani H, Maghsoudi A (2020) Landslide susceptibility mapping using AHP and fuzzy methods in the Gilan province, Iran. GeoJ 2020. https://doi.org/10.1007/s10708-020-10162-y

  10. Bonham-Carter GF (2014) Geographic Information Systems for Geoscientists: Modelling with GIS. Elsevier Science. https://books.google.com/books?id=FkKeBQAAQBAJ. Accessed 11 Nov 2020

  11. Choubin B, Moradi E, Golshan M, Adamowski J, Sajedi-Hosseini F, Mosavi A (2019) An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci Total Environ 651:2087–2096. https://doi.org/10.1016/j.scitotenv.2018.10.064

    Article  Google Scholar 

  12. Choudhury NB, Dey Choudhury SR (2020) Implications for planning of hydroelectric projects in Northeast India: an analysis of the impacts of the Tipaimukh project. GeoJ 2020. https://doi.org/10.1007/s10708-020-10158-8

  13. Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228. https://doi.org/10.1016/S0169-555X(01)00087-3

    Article  Google Scholar 

  14. Del Carmen PM, D’Elía M, Pérez M, Pacini J (2019) Wellhead protection zones for sustainable groundwater supply. Sustain Water Resour Manag 5:161–174. https://doi.org/10.1007/s40899-017-0156-x

    Article  Google Scholar 

  15. Dent BD (1999) Cartography: Thematic Map Design. vol v. 1. WCB/McGraw-Hill, https://books.google.com/books?id=Qn4YAQAAMAAJ. Accessed 11 Nov 2020

  16. Effat HA, Hegazy MN (2014) Mapping landslide susceptibility using satellite data and spatial multicriteria evaluation: the case of Helwan District, Cairo. Appl Geomat 6:215–228. https://doi.org/10.1007/s12518-014-0137-9

    Article  Google Scholar 

  17. Ghasemi A, Salajegheh A, Malekian A, Esmaliouri A (2014) Investigation of flooding and causative factors in Balegli Chay watershed by GIS, RS, and AHP techniques. J Environ Stud 40:389–400. https://doi.org/10.22059/jes.2014.51207

    Article  Google Scholar 

  18. Hadian A, Zafarani H, Farjoodi J (2015) Investigation of Source Parameters of Roudbar-Manjil Earthquake Using Hybrid Simulation Method. J Struct Constr Eng 2:5–18. https://scholar.google.com/scholar?q=Investigation+of+Source+Parameters+of+Rudbar-Manjil+Earthquake+Using+Hybrid+Simulation+Method&hl=fa&as_sdt=0&as_vis=1&oi=scholart. Accessed 11 Nov 2020

  19. Hembram TK, Paul GC, Saha S (2020) Modelling of gully erosion risk using new ensemble of conditional probability and index of entropy in Jainti River basin of Chotanagpur Plateau Fringe Area, India. Appl Geomat 12:337–360. https://doi.org/10.1007/s12518-020-00301-y

    Article  Google Scholar 

  20. Jafari M, Jafari A (2016) Locating an appropriate landfill for rural wastes using the AHP model and GIS software (Case study: Mahneshan town). J Res Environ Health 2:245–254. https://doi.org/10.22038/jreh.2016.8080

    Article  Google Scholar 

  21. Jafari P, Shahzeidi SS (2018) Analyzing and zoning of geomorphic hazards in the Northern regions of Iran using the network analysis process - Case Study: Gilan province. SEPEHR 27:193–208. https://doi.org/10.22131/sepehr.2018.33575

    Article  Google Scholar 

  22. Jamshidi S et al (2019) Combining gene expression programming and genetic algorithm as a powerful hybrid modeling approach for pear rootstocks tissue culture media formulation. Plant Meth 15:136. https://doi.org/10.1186/s13007-019-0520-y

    Article  Google Scholar 

  23. Kaur M, Sood SK (2020) Hydro-meteorological hazards and role of ICT during 2010–2019: A scientometric analysis. Earth Sci Inform 13:1201–1223. https://doi.org/10.1007/s12145-020-00495-0

    Article  Google Scholar 

  24. Kheirkhah Zarkesh M, Mohebbi Tafreshi A, Kolahchi AA, Abbasi AA, Majidi AR, Mohebbi Tafreshi G (2012a) Exploitation Management of Underground Dams by Using Mathematical Models of Finite Difference in GMS7.1 (The Case Study of Sanganeh Underground Dam-Iran). J Basic Appl Sci Res 2:6376–6384. https://scholar.google.com/scholar?hl=fa&as_sdt=0%2C5&q=Exploitation+Management+of+Underground+Dams+by+Using+Mathematical+Models+of+Finite+Difference+in+GMS7.1+%28The+Case+Study+of+Sanganeh+Underground+Dam-Iran%29&btnG=. Accessed 11 Nov 2020

  25. Kheirkhah Zarkesh M, Mohebbi Tafreshi G, Majidi A, Asadian F, Mohebbi Tafreshi A (2012b) Estimated volume of storable groundwater in underground dams storage with using GIS and RS (a case study of Qazvin Province). Earth Resour 4:19–26. https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=269426. Accessed 11 Nov 2020

  26. Khosravi K, Nohani E, Maroufinia E, Pourghasemi HR (2016) A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Nat Hazards 83:947–987. https://doi.org/10.1007/s11069-016-2357-2

    Article  Google Scholar 

  27. Klai A, Haddad R, Bouzid MK, Rabia MC (2020) Landslide susceptibility mapping by fuzzy gamma operator and GIS, a case study of a section of the national road n°11 linking Mateur to Béja (Nortshern Tunisia). Arab J Geosci 13:58. https://doi.org/10.1007/s12517-019-5029-1

    Article  Google Scholar 

  28. Klosterman RE, Brail RK, Bossard EG (1993) Spreadsheet models for urban and regional analysis. Center for Urban Policy Research New Brunswick, NJ. https://www.amazon.com/Spreadsheet-Models-Urban-Regional-Analysis/dp/088285142X. Accessed 11 Nov 2020

  29. Lewis SM, Fitts G, Kelly M, Dale L (2014) A fuzzy logic-based spatial suitability model for drought-tolerant switchgrass in the United States. Comput Electron Agric 103:39–47. https://doi.org/10.1016/j.compag.2014.02.006

    Article  Google Scholar 

  30. Lo CM (2017) Evolution of deep-seated landslide at Putanpunas stream, Taiwan. Geomat Nat Hazards Risk 8:1204–1224. https://doi.org/10.1080/19475705.2017.1309462

    Article  Google Scholar 

  31. Luo D, Wen X, Zhang H, Xu J, Zhang R (2020) An improved FAHP based methodology for groundwater potential zones in Longchuan River basin, Yunnan Province, China. Earth Sci Inform 13:847–857. https://doi.org/10.1007/s12145-020-00469-2

    Article  Google Scholar 

  32. Mahmoody Vanolya N, Jelokhani-Niaraki M (2019) The use of subjective–objective weights in GIS-based multi-criteria decision analysis for flood hazard assessment: a case study in Mazandaran, Iran. GeoJ 2019. https://doi.org/10.1007/s10708-019-10075-5

  33. Malczewski J (2006) GIS-based multicriteria decision analysis: a survey of the literature. Int J Geogr Inform Sci 20:703–726. https://doi.org/10.1080/13658810600661508

    Article  Google Scholar 

  34. Marinoni O, Hoppe A (2006) Using the analytical hierarchy process to support sustainable use of geo-resources in metropolitan areas. J Syst Sc Syst Eng 15:154–164. https://doi.org/10.1007/s11518-006-5004-8

    Article  Google Scholar 

  35. McMaster R (1997) In Memoriam: George F. Jenks (1916–1996). Cartogr Geogr Inform Syst 24:56–59. https://doi.org/10.1559/152304097782438764

    Article  Google Scholar 

  36. Merghadi A, Abderrahmane B, Tien Bui D (2018) Landslide Susceptibility Assessment at Mila Basin (Algeria): A Comparative Assessment of Prediction Capability of Advanced Machine Learning Methods. Int J Geo-Inf 7:268. https://doi.org/10.3390/ijgi7070268

    Article  Google Scholar 

  37. Mirdda HA, Bera S, Siddiqui MA, Singh B (2020) Analysis of bi-variate statistical and multi-criteria decision-making models in landslide susceptibility mapping in lower Mandakini Valley, India. GeoJ 85:681–701. https://doi.org/10.1007/s10708-019-09991-3

    Article  Google Scholar 

  38. Moghassem A, Fallahpour A (2013) Yarn Strength Modelling Using Adaptive Neuro-Fuzzy Inference System (ANFIS) and Gene Expression Programming (GEP). J Eng Fibers Fabr 8. https://doi.org/10.1177/155892501300800409

  39. Moghimi Kandlousy A, Mohebbi Tafreshi A, Mohebbi Tafreshi G (2016) Qualitative zoning of groundwater to assessment suitable irrigation water using GIS in Kelachai Region. Territory 13:77–96. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Qualitative+zoning+of+groundwater+to+assessment+suitable+irrigation+water+using+GIS+in+Kelachai+Region&btnG=. Accessed 11 Nov 2020

  40. Mohammady M, Pourghasemi HR, Amiri M (2019) Assessment of land subsidence susceptibility in Semnan plain (Iran): a comparison of support vector machine and weights of evidence data mining algorithms. Nat Hazards 99:951–971. https://doi.org/10.1007/s11069-019-03785-z

    Article  Google Scholar 

  41. Mohebbi Tafreshi A, Kheirkhah Zarkesh MM, Mohebbi Tafreshi G (2014) Using integration GIS and remote sensing techniques by decision support system to locate suitable areas construction of underground dam (The Case Study of Qazvin province). Iran J Watershed Manag Sci Eng 8:35–50. https://scholar.google.com/scholar?cluster=17779144375243061241&hl=en&oi=scholarr. Accessed 11 Nov 2020

  42. Mohebbi Tafreshi A, Mohebbi Tafreshi G, Bijeh Keshavarzi MH (2018) Qualitative zoning of groundwater to assessment suitable drinking water using fuzzy logic spatial modelling via GIS. Water Environ J 32:607–620. https://doi.org/10.1111/wej.12358

    Article  Google Scholar 

  43. Mohebbi Tafreshi A, Nakhaei M, Lashkari M, Mohebbi Tafreshi G (2019) Determination of the travel time and path of pollution in Iranshahr aquifer by particle-tracking model. SN Appl Sci 1:1616. https://doi.org/10.1007/s42452-019-1596-8

    Article  Google Scholar 

  44. Mohebbi Tafreshi A, Rezaei M, Mohebbi Tafreshi G (2016) A hydrogeochemical study of golpayegan plain based on the examination of ionic ratios and environmental factors controlling the chemical composition of ground water. J Environ Stud 42:49–63. https://doi.org/10.22059/jes.2016.58096

    Article  Google Scholar 

  45. Mohebbi Tafreshi G, Mohebbi Tafreshi A (2020) Statistical approaches and hydrochemical modeling of groundwater in the Golpayegan Plain aquifer, Iran. Model Earth Syst Environ 6:2391–2404. https://doi.org/10.1007/s40808-020-00822-w

    Article  Google Scholar 

  46. Mohebbi Tafreshi G, Nakhaei M, Lak R (2020a) A GIS-based comparative study of hybrid fuzzy-gene expression programming and hybrid fuzzy-artificial neural network for land subsidence susceptibility modeling. Stoch Environ Res Risk Assess 34:1059–1087. https://doi.org/10.1007/s00477-020-01810-3

    Article  Google Scholar 

  47. Mohebbi Tafreshi G, Nakhaei M, Lak R (2020b) Subsidence risk assessment based on a novel hybrid form of a tree-based machine learning algorithm and an index model of vulnerability. Geocarto Int 2020.https://doi.org/10.1080/10106049.2020.1841835

  48. Mohebbi Tafreshi G, Nakhaei M, Lak R (2021a) Evaluation of accuracy of hybrid model of gene expression planning - Fuzzy logic in estimation of land subsidence risk. J Geosci 2021. https://doi.org/10.22071/gsj.2019.200057.1696

  49. Mohebbi Tafreshi G, Nakhaei M, Lak R (2021) Land subsidence risk assessment using GIS Fuzzy logic spatial modeling in Varamin aquifer, Iran. GeoJ 86:1203–1223. https://doi.org/10.1007/s10708-019-10129-8

    Article  Google Scholar 

  50. MohebbiTafreshi A, MohebbiTafreshi G (2017) Qualitative zoning of groundwater for drinking purposes in Lenjan plain using GQI method through GIS. Environ Health Eng Manag 4:209–215. https://doi.org/10.15171/ehem.2017.29

    Article  Google Scholar 

  51. Mokhtari M, Abedian S (2019) Spatial prediction of landslide susceptibility in Taleghan basin. Iran Stoch Environ Res Risk Assess 33:1297–1325. https://doi.org/10.1007/s00477-019-01696-w

    Article  Google Scholar 

  52. Morea H, Samanta S (2020) Multi-criteria decision approach to identify flood vulnerability zones using geospatial technology in the Kemp-Welch Catchment, Central Province, Papua New Guinea. Appl Geomat https://doi.org/10.1007/s12518-020-00315-6

  53. Mortazavi Chamchali M, Ghazifard A (2019) The use of fuzzy logic spatial modeling via GIS for landfill site selection (case study: Rudbar-Iran). Environ Earth Sci 78:305. https://doi.org/10.1007/s12665-019-8296-y

    Article  Google Scholar 

  54. Mortazavi Chamchali M, Ghazifard A (2020) A comparison of fuzzy logic and TOPSIS methods for landfill site selection according to field visits, engineering geology approach and geotechnical experiments (case study: Rudbar County, Iran). Waste Manag Res 2020. https://doi.org/10.1177/0734242X20952839

  55. Mumzai A, Talebi A, Emami N (2018) Site Selection of the Underground Dam using the Analytical Hierarchy Process and Geographic Information System (Case Study: Shahrekurd and Marghmalek Watersheds). Environ Water Eng 4:137–147. https://doi.org/10.22034/jewe.2018.127667.1254

    Article  Google Scholar 

  56. Nakhaei M, MohebbiTafreshi A, MohebbiTafreshi G (2019) Modeling and predicting changes of TDS concentration in Varamin aquifer using GMS software. J Adv Appl Geol 9:25–37. https://doi.org/10.22055/aag.2019.27539.1903

    Article  Google Scholar 

  57. Nakhaei M, Mohebbi Tafreshi A, Mohebbi Tafreshi G (2021) A new approach in comparison and evaluation of the overall accuracy of six soil-water retention models using statistical benchmarks and fuzzy method. Eurasian Soil Sci 54:716–728. https://doi.org/10.1134/S1064229321050136

    Article  Google Scholar 

  58. Nameghi H, Hosseini SM, Sharifi MB (2013) An analytical procedure for estimating land subsidence parameters using field data and InSAR images in Neyshabur plain. Sci Q J Iran Assoc Eng Geol 6:33–50. http://www.jiraeg.ir/article_68324.html. Accessed 11 Nov 2020

  59. Nourani V, Pradhan B, Ghaffari H, Sharifi SS (2014) Landslide susceptibility mapping at Zonouz Plain, Iran using genetic programming and comparison with frequency ratio, logistic regression, and artificial neural network models. Nat Hazards 71:523–547. https://doi.org/10.1007/s11069-013-0932-3

    Article  Google Scholar 

  60. Nguyen T M T, Nguyen D T, Truong M H, Doan N A (2020) GIS-based simulation for deep-water port site selection using analytic hierarchy process: a case study from Southern East of Vietnam. Appl Geomat 2020. https://doi.org/10.1007/s12518-020-00319-2

  61. Pouramraei R, Nesari S, Najmoddini I (2020) Site Selection of Koohdasht municipal solid waste landfill using ANP-WLC integrated model. Environ Water Eng 6:149–160. https://doi.org/10.22034/jewe.2020.233678.1368

    Article  Google Scholar 

  62. Pradhan B, Abokharima MH, Jebur MN, Shafapour Tehrany M (2014) Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS. Nat Hazards 73:1019–1042. https://doi.org/10.1007/s11069-014-1128-1

    Article  Google Scholar 

  63. Raines GL, Sawatzky DL, Bonham-Carter GF (2010) New fuzzy logic tools in ArcGIS 10. http://www.esri.com/news/arcuser/0410/files/fuzzylogic.pdf. Accessed 11 Nov 2020

  64. Rezaei M, Yazdani Noori Z, Dashti Barmaki M (2020) Land subsidence susceptibility mapping using analytical hierarchy process (AHP) and Certain Factor (CF) models at Neyshabur plain, Iran. Geocarto Int 2020. https://doi.org/10.1080/10106049.2020.1768596

  65. Roering JJ, Kirchner JW, Dietrich WE (2005) Characterizing structural and lithologic controls on deep-seated landsliding: Implications for topographic relief and landscape evolution in the Oregon Coast Range, USA. GSA Bull 117:654–668. https://doi.org/10.1130/B25567.1

    Article  Google Scholar 

  66. Saari DG, Merlin VR (1996) The Copeland method. Econ Theor 8:51–76. https://doi.org/10.1007/bf01212012

    Article  Google Scholar 

  67. Saaty TL (1980) The analytical hierarchy process. McGraw Hill, New York

    Google Scholar 

  68. SCI (2019) Population of the country in terms of gender in urban and rural areas. Statistical Center of Iran. https://www.amar.org.ir/english. Accessed 11 Nov 2020

  69. Samui P (2014) Vector machine techniques for modeling of seismic liquefaction data. Ain Shams Eng J 5:355–360. https://doi.org/10.1016/j.asej.2013.12.004

    Article  Google Scholar 

  70. Şener Ş, Şener E, Nas B, Karagüzel R (2010) Combining AHP with GIS for landfill site selection: a case study in the Lake Beyşehir catchment area (Konya, Turkey). Waste Manag 30:2037–2046. https://doi.org/10.1016/j.wasman.2010.05.024

    Article  Google Scholar 

  71. Soltanpour H, Zaré M, Moghimi E, Jafarbiglo M (2019) Earthquake risk assessment in northwestern Tehran using Analytical Hierarchy process (AHP), case study: 22nd District. Disaster Prevent Manag Knowl 8:373–386. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Earthquake+risk+assessment+in+northwestern+Tehran+using+Analytical+Hierarchy+process+%28AHP%29%2C+case+study%3A+22nd+District&btnG=. Accessed 11 Nov 2020

  72. Yamani M, Hasanpoor S, Mostafaei A, Shadman Roodposhti M (2013) Mapping landslide hazard zonation in Great Karoon Aquifer Basin by Analytical Hierarchy Process (AHP) model in Geographic Information System (GIS) Environment. Geography Environ Plann 23:39–56. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mapping+Landslide+Hazard+Zonation+in+Great+Karoon+Aquifer+Basin+by+Analytical+Hierarchy+Process+%28AHP%29+model+in+Geographic+Information+System+%28GIS%29+Environment&btnG=. Accessed 11 Nov 2020

  73. Zadeh LA (1965) Fuzzy Sets. Inf Control 8:338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Kharazmi University for providing the necessary data to carry out this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ghazaleh Mohebbi Tafreshi.

Ethics declarations

Ethical standards

It is confirmed that this manuscript is an original work of the authors and has not been published or under review in another refereed journal, and is not published anywhere.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by H. Babaie

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohebbi Tafreshi, A., Mohebbi Tafreshi, G. Investigation and zoning of geo-environmental risk around the western edge of Khareshk village's oil transmission line, Iran. Earth Sci Inform 14, 1367–1381 (2021). https://doi.org/10.1007/s12145-021-00645-y

Download citation

Keywords

  • AHP method
  • ArcGIS
  • Fuzzy method
  • Multi-criteria spatial evaluation
  • Risk assessment