Prediction of the earthquake magnitude by time series methods along the East Anatolian Fault, Turkey

Abstract

In this study, the magnitude of an earthquake in the East Anatolian Fault (EAF) of Turkey are predicted based on previous earthquakes whose magnitudes are four or more by two-time series methods, namely autoregressive integrated moving average (ARIMA) and singular spectrum analysis (SSA). These methods are quite new in seismology despite being successful techniques in other branches of science. We use ARIMA and SSA models to train and predict the mean and maximum values of the earthquakes' magnitudes due to seismological events between years 1900 and 2019. 447 earthquake magnitudes between 1900 and 1995 are used for training models, and then 447 magnitudes between 1995 and 2019 are taken into account for testing. The root mean square error (RMSE) is calculated to evaluate the accuracy of each model. The results demonstrate that the SSA model is better than the ARIMA model to predict the earthquake magnitude. Hence, for the years 2020 to 2030 the magnitude of an earthquake is forecasted using the SSA model. The result shows that the highest magnitude of earthquake is forecasted for the year 2021 in magnitude level of 4.0–5.9.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Akkar S, Azak T, Çan T, Çeken U, Demircioğlu Tümsa MB, Duman TY, Erdik M, Ergintav, S, Kadirioğlu FT, Kalafat D, Kale Ö, Kartal RF, Kekovalı K, Kılıç, T, Özalp S, Altuncu Poyraz S, Şeşetyan K, Tekin S, Yakut A, Yılmaz MT, Yücemen MS, Zülfikar Ö (2018) Evolution of seismic hazard maps in Turkey. Bull Earthq Eng 16(8):3197–3228

  2. Aksoy E, Inceoez M, Koçyiğit A (2007) Lake Hazar basin: A negative flower structure on the east anatolian fault system (EAFS), SE Turkey. Turk J Earth Sci 16(3):319–338

    Google Scholar 

  3. Allen M, Jackson J, Walker R (2004) Late Cenozoic reorganization of the Arabia‐Eurasia collision and the comparison of short‐term and long‐term deformation rates. Tectonics, 23(2)

  4. Arpat E, Şaroğlu F (1972) The East Anatolian fault system; thoughts on its development. Min Res Explor Inst Turkey Bull 78:33–39

    Google Scholar 

  5. Aslan E (1972) Magnitude and time distributions of earthquakes in Turkey. Bull Int Inst Seismol Earthq Eng 7:1–10

    Google Scholar 

  6. Başarır Baştürk N, Özel NM, Altınok Y, Duman TY (2017) Türkiye ve Yakın Çevresi için Geliştirilmiş Tarihsel Dönem (MÖ 2000-MS 1900-) Deprem Katalogu. Türkiye Sismotektonik Haritası Açıklama Kitabı, MTA Özel Yayınlar Serisi-35, 24

  7. Bath M (1979) Seismic risk in Turkey-a preliminary approach. Tectonophysics 54:9–16

    Article  Google Scholar 

  8. Bayrak E, Yılmaz Ş, Softa M, Türker T, Bayrak Y (2015) Earthquake hazard analysis for East Anatolian Fault Zone, Turkey. Nat Hazards 76(2):1063–1077

    Google Scholar 

  9. Bayrak Y, Öztürk S, Çınar H, Kalafat D, Tsapanos TM, Koravos GC, Leventakis GA (2009) Estimating earthquake hazard parameters from instrumental data for different regions in and around Turkey. Eng Geol 105 (3-4):200–210

  10. Bayrak Y, Yılmazturk A, Ozturk S (2005) Relationships between fundamental seismic hazard parameters for the different source regions in Turkey. Nat Hazards 36:445–462

    Article  Google Scholar 

  11. Broomhead DS, King GP (1986) Extracting qualitative dynamics from experimental data. Physica D 20(2–3):217–236

    Article  Google Scholar 

  12. Bulut F (2017) Seismic and a-seismic tectonic motions along the East Anatolian Fault: Seismic Gap or Creep in the east of Hazar Lake? AKU. J Sci Eng 17:257–263

    Google Scholar 

  13. Bulut F, Bohnhoff M, Eken T, Janssen C, Kılıç T, Dresen G (2012) The East Anatolian Fault Zone: Seismotectonic setting and spatiotemporal characteristics of  seismicity based on precise earthquake locations. J Geophys Res Solid Earth 117(B7)

  14. Dargahi-Noubary GR (1986) A method for predicting future large earthquakes using extreme order statistics. Phys Earth Planet Inter 42:241–245

    Article  Google Scholar 

  15. DEMA (2020) The Republic of Turkey Prime Ministry, Disaster & Emergency Management Authority, Presidential of Earthquake Department, https://deprem.afad.gov.tr/, (Access Date: 23 Dec 2020)

  16. Deng C (2014) Time Series Decomposition Using Singular Spectrum Analysis, Master thesis, 81

  17. Dewey JF, Hempton MR, Kidd WSF, Saroglu FAMC, Şengör AMC (1986) Shortening of continental lithosphere: the neotectonics of Eastern Anatolia—a young collision zone. Geological Society, London, Special Publications 19(1):1–36

    Article  Google Scholar 

  18. Duman TY, Çan T, Emre Ö, Kadirioğlu FT, Başarır Baştürk N, Kılıç T, Arslan S, Özalp S, Kartal RF, Kalafat D, Karakaya F, Eroğlu Azak T, Özel NM, Ergintav S, Akkar S, Altınok Y, Tekin S, Cingöz A, Kurt Aİ (2018). ‘Seismotectonics Database of Turkey’. Bull Earthq Engr 16:3277–3316. https://doi.org/10.1007/s10518-016-9965-9

  19. Duman TY, Emre Ö (2013) The East Anatolian Fault: geometry, segmentation and jog characteristics. Geological Society, London, Special Publications 372(1):495-529

  20. Emre Ö, Duman TY, Özalp S, Elmacı H, Olgun Ş, Şaroğlu F (2013) Açıklamalı Türkiye Diri Fay Haritası. Ölçek 1(1.250), 000, Maden Tetkik ve Arama Genel Müdürlüğü, Özel Yayın Serisi-30, Ankara-Türkiye (In Turkish)

  21. Erdik M, Biro YA, Onur T, Sesetyan K, Birgoren G (1999) Assessment of earthquake hazard in Turkey and neighboring. Ann Geophys 42(6)

  22. Fraedrich K (1986) Estimating the dimensions of weather and climate attractors. J Atmos Sci 43(5):419–432

    Article  Google Scholar 

  23. Gao W, Guo J, Zhou M, Y H, Chen X, Ji B (2020) Gravity tides extracted from SSA-denoised superconducting gravity data with the harmonic analysis: a case study at Wuhan station, China. Acta Geodaetica et Geophysica, 1–17

  24. Ghil M, Vautard R (1991) Interdecadal oscillations and the warming trend in global temperature time series. Nature 350(6316):324–327

    Article  Google Scholar 

  25. Golyandina N, Zhigljavsky A (2013) Singular Spectrum Analysis for time series. Springer Science & Business Media.

  26. Guo J, Shi K, Liu X, Sun Y, Li W, Kong Q (2019) Singular spectrum analysis of ionospheric anomalies preceding great earthquakes: Case studies of Kaikoura and Fukushima earthquakes. J Geodyn 124:1–13

    Article  Google Scholar 

  27. Hassani H, Yeganegi MR, Khan A, Silva ES (2020) The Effect of Data Transformation on Singular Spectrum Analysis for Forecasting. Signals 1:2

    Article  Google Scholar 

  28. Helmstetter A, Sornette D (2003) Importance of direct and indirect triggered seismicity in the ETAS model of seismicity. Geophys Res Lett 30(11)

  29. Hempton MR (1985) Structure and deformation history of the Bitlis suture near Lake Hazar, southeastern Turkey. GSA Bulletin 96(2):233–243. https://doi.org/10.1130/0016-7606(1985)96%3C233:SADHOT%3E2.0.CO;2

  30. Hyndman RJ, Athanasopoulos G (2018) Forecasting: principles and practice. OTexts.

  31. Jackson DD, Kagan YY (2006) The 2004 Parkfield earthquake, the 1985 prediction, and characteristic earthquakes: Lessons for the future. Bull Seismol Soc Am 96(4B):S397–S409

  32. Kadirioğlu FT, Kartal RF, Kılıç T, Kalafat D, Duman TY, Azak TE, Emre Ö (2018) An improved earthquake catalogue (M≥ 4.0) for Turkey and its near vicinity (1900–2012). Bull Earthq Eng 16(8):3317–3338

  33. Kagan YY (1993) Statistics of characteristic earthquakes. Bulletin of the Seismological Society of America 83(1):7–24

  34. Kagan YY (2007) On Earthquake Predictability Measurement: Information Score and Error Diagram. Pure Appl Geophys 164:1947–1962

    Article  Google Scholar 

  35. Kayabalı K, Akın M (2003) Seismic hazard map of Turkey using the deterministic approach. Eng Geol 69:127–137

    Article  Google Scholar 

  36. Kumaresan R, Tufts DW (1980) Data-adaptive principal component signal processing. In 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes 949–954. IEEE.

  37. Lai Y, Dzombak DA (2020) Use of the Autoregressive Integrated Moving Average (ARIMA) Model to Forecast Near-Term Regional Temperature and Precipitation. Weather Forecast 35(3):959–976

    Article  Google Scholar 

  38. Moskvina V, Zhigljavsky A (2003) An algorithm based on singular spectrum analysis for change-point detection. Commun Stat - Simul Comput 32(2):319–352

    Article  Google Scholar 

  39. Naim I, Mahara T (2018) Comparative Analysis of Univariate Forecasting Techniques for Industrial Natural Gas Consumption. Int J Image Graph Signal Process 10:33–44

    Article  Google Scholar 

  40. Ogata Y (2017) Statistics of Earthquake Activity: Models and Methods for Earthquake Predictability Studies. Annu Rev Earth Planet Sci 45:497–527

    Google Scholar 

  41. Özel G (2011) A bivariate compound Poisson model for the occurrence of foreshock and aftershock sequences in Turkey. Environmetrics 22(7):847–856

    Article  Google Scholar 

  42. Özel G Inal C (2008) The probability function of the compound Poisson process and an application to aftershock sequence in Turkey. Environmetrics: J Int Environmetrics Soc 19(1):79–85

  43. Pereira de Albuquerque WC, Maciel CD (2001) Performance of ultrasound echo decomposition using singular spectrum analysis. Ultrasound Med Biol 27(9):1231–1238

    Article  Google Scholar 

  44. Petersen MD, Cao T, Campbell KW, Frankel AD (2007). Time-independent and time-dependent seismic hazard assessment for the State of California: Uniform California Earthquake Rupture Forecast Model 1.0. Seismol Res Lett 78(1):99–109

  45. Serita A, Hattor K, Yoshino C, Hayakawa M, Isezaki N (2005) Principal component analysis and singular spectrum analysis of ULF geomagnetic data associated with earthquakes

  46. Shishegaran A, Taghavizade H, Bigdeli A, Shishegaran A (2019) Predicting the Earthquake Magnitude along Zagros Fault Using Time Series and Ensemble Model. Soft Comput Civ Eng 3(4):67–77

    Google Scholar 

  47. Silva ES, Hassani H, Heravi S (2018) Modeling European industrial production with multivariate singular spectrum analysis: A cross-industry analysis. J Forecast 37:371–384

    Article  Google Scholar 

  48. Sivapragasam C, Liong SY, Pasha MFK (2001) Rainfall and runoff forecasting with SSA–SVM approach. J Hydroinf 3(3):141–152

    Article  Google Scholar 

  49. Vautard R, Ghil M (1989) Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D-Nonlinear Phenomena 35:395–424

    Article  Google Scholar 

  50. Westaway R (1994) Present-day kinematics of the Middle East and eastern Mediterranean. Journal of Geophysical Research: Solid Earth 99(B6):12071–12090

    Article  Google Scholar 

  51. Xiao J, Zhu X, Huang C, Yang X, Wen F, Zhong M (2019) A new approach for stock price analysis and prediction based on SSA and SVM. Int J Inf Technol Decis Mak 18(01):287–310

    Article  Google Scholar 

  52. Yarar R, Ergunay O, Erdik M, Gulkan P (1980) A Preliminary Probabilistic Assessment of the Seismic Hazard in Turkey. In: Proceedings of the 7th World Conference on Earthquake Engineering, Istanbul. 309–316

  53. Yiou P, Baert E, Loutre MF (1996). Spectral analysis of climate data. Surv Geophys 17(6):619–663

  54. Zhang Y, Yang H, Cui H, Chen Q (2020) Comparison of the ability of ARIMA, WNN and SVM models for drought forecasting in the Sanjiang Plain. China Natural Resources Research 29(2):1447–1464

    Article  Google Scholar 

  55. Zhu F (2012) Modeling overdispersed or underdispersed count data with generalized Poisson integer-valued GARCH models. J Math Anal Appl 389(1):58–71

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hatice Oncel Cekim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by: H. Babaie.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cekim, H.O., Tekin, S. & Özel, G. Prediction of the earthquake magnitude by time series methods along the East Anatolian Fault, Turkey. Earth Sci Inform (2021). https://doi.org/10.1007/s12145-021-00636-z

Download citation

Keywords

  • Earthquake prediction
  • Time series analysis
  • ARIMA
  • Singular spectrum analysis