Behrens T, Zhu A-X, Schmidt K, Scholten T (2010) Multi-scale digital terrain analysis and feature selection for digital soil mapping. Geoderma 155:175–185. https://doi.org/10.1016/j.geoderma.2009.07.010
Article
Google Scholar
Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46. https://doi.org/10.1177/001316446002000104
Congalton RG, Green K (2009) Assessing the accuracy of remotely sensed data: principles and practices, 2nd edn. CRC Press, Boca Raton
Google Scholar
Contador JFL, Schnabel S, Gutiérrez AG, Fernández MP (2009) Mapping sensitivity to land degradation in Extremadura. SW Spain Land Degrad Dev 20:129–144. https://doi.org/10.1002/ldr.884
Article
Google Scholar
Fourcade Y, Besnard AG, Secondi J (2018) Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Glob Ecol Biogeogr 27:245–256. https://doi.org/10.1111/geb.12684
Article
Google Scholar
Global-SoilMap (2013) Specifications Tiered1 GlobalSoilMap products, release 2.4
Graham CH, Hijmans RJ (2006) A comparison of methods for mapping species ranges and species richness. Glob Ecol Biogeogr 15:578–587. https://doi.org/10.1111/j.1466-8238.2006.00257.x
Article
Google Scholar
Kolodner JL (1993) Case-based reasoning. In: What Is Case-Based Reasoning? Morgan Raufmann Publishers, San Mateo
Chapter
Google Scholar
Lagacherie P, Sneep A-R, Gomez C, Bacha S, Coulouma G, Hamrouni MH, Mekki I (2013) Combining Vis–NIR hyperspectral imagery and legacy measured soil profiles to map subsurface soil properties in a Mediterranean area (cap-bon, Tunisia). Geoderma 209–210:168–176. https://doi.org/10.1016/j.geoderma.2013.06.005
Article
Google Scholar
Lecours V, Devillers R, Simms AE, Lucieer VL, Brown CJ (2017) Towards a framework for terrain attribute selection in environmental studies. Environ Model Softw 89:19–30. https://doi.org/10.1016/j.envsoft.2016.11.027
Article
Google Scholar
Liu F, Rossiter DG, Song XD, Zhang GL, Yang RM, Zhao YG, Li DC, Ju B (2016) A similarity-based method for three-dimensional prediction of soil organic matter concentration. Geoderma 263:254–263. https://doi.org/10.1016/j.geoderma.2015.05.013
Article
Google Scholar
Lu HX (2008) Modelling terrain complexity. In: Zhou Q, Lees B, Tang G (eds) Advances in digital terrain analysis. Springer, Berlin, pp 159–176
Google Scholar
Lu D, Li G, Valladares GS, Batistella M (2004) Mapping soil erosion risk in Rondônia, Brazilian Amazonia: using RUSLE, remote sensing and GIS. Land Degrad Dev 15:499–512. https://doi.org/10.1002/ldr.634
Article
Google Scholar
Mansuy N, Thiffault E, Paré D, Bernier P, Guindon L, Villemaire P, Poirier V, Beaudoin A (2014) Digital mapping of soil properties in Canadian managed forests at 250m of resolution using the k-nearest neighbor method. Geoderma 235–236:59–73. https://doi.org/10.1016/j.geoderma.2014.06.032
Article
Google Scholar
McBratney AB, Mendonça Santos ML, Minasny B (2003) On digital soil mapping. Geoderma 117:3–52. https://doi.org/10.1016/S0016-7061(03)00223-4
Article
Google Scholar
Qin C-Z, Wu X-W, Jiang J-C, Zhu A-X (2016) Case-based knowledge formalization and reasoning method for digital terrain analysis- application to extracting drainage networks. Hydrol Earth Syst Sci 20:3379–3392. https://doi.org/10.5194/hess-20-3379-2016
Article
Google Scholar
Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F (2018) A review of statistically-based landslide susceptibility models. Earth-Sci Rev 180:60–91. https://doi.org/10.1016/j.earscirev.2018.03.001
Article
Google Scholar
Shi X, Zhu AX, Burt JE, Qi F, Simonson D (2004) A case-based reasoning approach to fuzzy soil mapping. Soil Sci Soc Am J 68:885–894. https://doi.org/10.2136/sssaj2004.8850
Article
Google Scholar
Shi X, Long R, Dekett R, Philippe J (2009) Integrating different types of knowledge for digital soil mapping. Soil Sci Soc Am J 73:1682–1692. https://doi.org/10.2136/sssaj2007.0158
Article
Google Scholar
Süzen ML, Kaya BŞ (2012) Evaluation of environmental parameters in logistic regression models for landslide susceptibility mapping. Int J Digit Earth 5:338–355. https://doi.org/10.1080/17538947.2011.586443
Article
Google Scholar
Thompson JA, Roecker S, Grunwald S, Owens PR (2012) Chapter 21 - digital soil mapping: interactions with and applications for Hydropedology. In: Lin H (ed) Hydropedology. Academic Press, Boston, pp 665–709. https://doi.org/10.1016/B978-0-12-386941-8.00021-6
Chapter
Google Scholar
Vaysse K, Lagacherie P (2015) Evaluating digital soil mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France). Geoder Reg 4:20–30. https://doi.org/10.1111/ejss.12244
Zald HSJ, Ohmann JL, Roberts HM, Gregory MJ, Henderson EB, McGaughey RJ, Braaten J (2014) Influence of lidar, Landsat imagery, disturbance history, plot location accuracy, and plot size on accuracy of imputation maps of forest composition and structure. Remote Sens Environ 143:26–38. https://doi.org/10.1016/j.rse.2013.12.013
Article
Google Scholar
Zhang G, Zhu A-X, Windels SK, Qin C-Z (2018) Modelling species habitat suitability from presence-only data using kernel density estimation. Ecol Indic 93:387–396. https://doi.org/10.1016/j.ecolind.2018.04.002
Article
Google Scholar
Zhu A-X, Liu J, Du F, Zhang S-J, Qin CZ, Burt J, Behrens T, Scholten T (2015) Predictive soil mapping with limited sample data. Eur J Soil Sci 66:535–547. https://doi.org/10.1111/ejss.12244
Article
Google Scholar
Zhu A-X, Lu G, Liu J, Qin C-Z, Zhou C (2018) Spatial prediction based on third law of geography. Ann GIS 24:225–240. https://doi.org/10.1080/19475683.2018.1534890
Article
Google Scholar