Air pollution forecasting from sky images with shallow and deep classifiers

  • Mohammad Saleh Vahdatpour
  • Hedieh Sajedi
  • Farzad Ramezani
Research Article


Air pollution is one of the most important problems in the new era. Detecting the level of air pollution from an image taken by a camera can be informative for the people who are not aware of exact air pollution level be declared daily by some organizations like municipalities. In this paper, we propose a method to predict the level of the air pollution of a location by taking an image by a camera of a smart phone then processing it. We collected an image dataset from city of Tehran. Afterward, we proposed two methods for estimation of level of air pollution. In the first method, the images are preprocessed and then Gabor transform is used to extract features from the images. At the end, two shallow classification methods are employed to model and predict the level of air pollution. In the second proposed method, a Convolutional Neural Network(CNN) is designed to receive a sky image as an input and result a level of air pollution. Some experiments have been done to evaluate the proposed method. The results show that the proposed 9 method has an acceptable accuracy in detection of the air pollution level. Our deep classifier achieved accuracy about 59.38% which is 10 about 6% higher than traditional combination of feature extraction and classification methods.


Air pollution Image processing Gabor filter Statistical moments Convolutional Neural Network 


  1. Anderson TL, Ogren JA (1998) Determining aerosol radiative properties using the TSI 3563 integrating nephelometer. Aerosol Sci Technol 29(1):57–69. CrossRefGoogle Scholar
  2. Anderson JO, Thundiyil JG, Stolbach A (2012) Clearing the air: a review of the effects of particulate matter air pollution on human health. J Med Toxicol 8(2):166–175. CrossRefGoogle Scholar
  3. Barrea L, Savastano S, Di Somma C, Savanelli M, Nappi F, Albanese L, Orio F, Colao A (2016) Low serum vitamin D-status, air pollution and obesity: A dangerous liaison. Rev Endocr Metab Disord. Google Scholar
  4. Bland JM, Altman DG (1996) Statistics notes: measurement error. BMJ 312(7047):1654. CrossRefGoogle Scholar
  5. Brauer M, Amann M, Burnett RT, Cohen A, Dentener F, Ezzati M, Henderson SB, Krzyzanowski M, Martin RV, Van Dingenen R, Van Donkelaar A (2012) G.D. Thurston Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. Environ Sci Technol 46(2):652–660. CrossRefGoogle Scholar
  6. Daugman JG (1985) Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J Opt Soc Am A 2(7):1160–1169. CrossRefGoogle Scholar
  7. Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG, Speizer FE (1993) An association between air pollution and mortality in six U.S. cities. N Engl J Med 329(24):1753–1759. CrossRefGoogle Scholar
  8. Fogel I, Sagi D (1989) Gabor filters as texture discriminator. Biol Cybern 61(2):103113 CrossRefGoogle Scholar
  9. Gauss CF (1816) Bestimmung der Genauigkeit der Beobachtungen. Zeitschrift für Astronomie und verwandte Wissenschaften 1:187–197Google Scholar
  10. Jerrett RTB, Pope CA, Ito K, Thurston G, Krewski D, Shi Y, Calle E, Thun M (2009) Long-term ozone exposure and mortality. N Engl J Med 360(11):1085–1095. CrossRefGoogle Scholar
  11. Johnson T, Mol APJ, Zhang L, Yang S (2017) Living under the dome: individual strategies against air pollution in Beijing. Habitat International 59:110–117. CrossRefGoogle Scholar
  12. Han J, Kamber M, Pei J (2011) Data Mining: Concepts and Techniques, Third Edition. In: Kaufmann M (ed) The Morgan Kaufmann Series in Data Management Systems, 3rd edn. Morgan Kaufmann Publishers - Elsivier, MassachusettsGoogle Scholar
  13. Li H, Chen J, Lu H, Chi Z (2017) CNN for saliency detection with low-level feature integration. Neurocomputing 226:212–220. CrossRefGoogle Scholar
  14. Lim S, Vos T, Flaxman A, Danaei G, Shibuya K, Adair-Rohani H, Amann A, Ross Anderson H, Andrews K, Aryee M, Charles Atkinson LJB, Bahalim AN, Balakrishnan K, Balmes J, Barker-Collo S, Baxter A, Bell ML, Blore JD, Blyth F, Bonner C, Borges G, Bourne R, Boussinesq M, Brauer M, Brooks P, Bruce NG, Brunekreef B, Bryan-Hancock C, Bucello C, Buchbinder R, Bull F, Burnett RT, Byers TE, Calabria B, Carapetis J, Carnahan E, Chafe Z, Charlson F, Chen H, Chen JS, Cheng AT-A, Child JC, Cohen A, Ellicott Colson K (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet 380(9859):2224–2260. CrossRefGoogle Scholar
  15. Liu C, Tsow F, Zou Y, Tao N (2016) Particle pollution estimation based on image analysis. PLoS One 11(2):e0145955. CrossRefGoogle Scholar
  16. Macias ES, Husar RB (1976) Atmospheric particulate mass measurement with beta attenuation mass monitor. Environ Sci Technol 10(9):904–907. CrossRefGoogle Scholar
  17. Malmqvista E, Liewb Z, Källéna K, Rignell-Hydboma A, Rittnera R, Rylandera L, Ritzb B (2017) Fetal growth and air pollution - a study on ultrasound and birth measures. Environ Res 152:73–80. CrossRefGoogle Scholar
  18. Marčelja S (1980) Mathematical description of the responses of simple cortical cells. J Opt Soc Am 70(11):1297–1300. CrossRefGoogle Scholar
  19. Mousavi SE, Heydarpour P, Reis J, Amiri M, Sahraian MA (2017) Multiple sclerosis and air pollution exposure: mechanisms toward brain autoimmunity. Med Hypotheses 100:23–30. CrossRefGoogle Scholar
  20. Narasimhan SG, Nayar SK (2002) Vision and the atmosphere. Int J Comput Vis 48(3):233–254. CrossRefGoogle Scholar
  21. Pope CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K (2002) G.D. Thurston Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA: J Am Med Assoc 287(9):1132–1114. CrossRefGoogle Scholar
  22. Prochazka A, et al (2000) Satellite image processing and air pollution detection. ICASSP '00 proceedings of the acoustics, speech, and signal processing, 2000. On IEEE international conference -volume 04Google Scholar
  23. Razavi F, Sajedi H, Shiri ME (2016) Integration of Color and Uniform Interlaced Derivative Pattern Features for Object Tracking. IET Image Processing 10(2):1–10Google Scholar
  24. Sajedi H, Jamzad M (2010) CBS: Contourlet-Based Steganalysis Method. Journal of Signal Processing Systems 61(3):367–373Google Scholar
  25. Schultza AA, Schauerb JJ, Malecki KMC (2017) Allergic disease associations with regional and localized estimates of air pollution. Environ Res 155:77–85. CrossRefGoogle Scholar
  26. Thornton C, et al (2013) Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms. Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining. ACMGoogle Scholar
  27. U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Outreach and Information Division Research Triangle Park, NC February 2014 EPA-456/F-14-002.Google Scholar
  28. Wacker M, Holick MF (2013) Sunlight and vitamin D: a global perspective for health. Dermato-endocrinology 5(1):51–108. CrossRefGoogle Scholar
  29. Walker H (1931) Studies in the history of the statistical method. Williams & Wilkins Co., Baltimore, pp 24–25Google Scholar
  30. Westfall PH Kurtosis as Peakedness, 1905 - 2014. R.I.P. Am Stat 68:191–195Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mohammad Saleh Vahdatpour
    • 1
  • Hedieh Sajedi
    • 1
  • Farzad Ramezani
    • 1
  1. 1.Department of Computer Science, School of Mathematics, Statistics and Computer Science, College of ScienceUniversity of TehranTehranIran

Personalised recommendations