Skip to main content

Iterative selective spatial variance reduction of MYD11A2 LST data


The aim of this research effort is to develop a method that will allow to map and evaluate thermal anomalies in SW USA from the MYD11A2 night land surface temperature (LST) imagery being available for the year 2014, that present higher spatial (1 km) and temporal (46 images per year) resolution than the MYD11C3 LST data (12 images per year at 5.6 km spatial resolution). The fact that is MYD11A2 LST imagery is projected to a rectangular grid did not affect the X, Y and elevation (H) spatial decorrelation stretch. Principal component analysis and linear regression models isolated and removed the X, Y, H (spatial) dependent variance included in the data while metrics devised verified the selective spatial variance reduction. The reconstructed 46 LST images represent the amount the LST deviates from the X, Y and H predicted for the year 2014. The thematic information content of the reconstructed LST images is verified by cluster analysis and mapped the spatial extend and the temporal variability of thermal anomalies within the study area. The positive thermal anomaly clusters are spatially arranged mainly west of Sierra Nevada in Great Basin Section where extensional tectonics create a series of titled elongated mountain blocks along the N to S direction in between basins bounded by normal faults, while the negative thermal anomaly clusters are spatially arranged along the coastal region, further north and in the western region far from the tilted mountain tectonic blocks of the Great Basin Section. The spatial maps that define regions with (positive or negative) thermal anomalies and distinct mean land response could assist landcover studies and support urban and rural planning in the context of emerging climatic change.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. Alward RD, Detling JK, Milchunas DG (1999) Grassland vegetation changes and nocturnal global warming. Science 283:229–231

    Article  Google Scholar 

  2. Blackett M (2014) Early analysis of Landsat-8 thermal infrared sensor imagery of volcanic activity. Remote Sens 6:2282–2295

    Article  Google Scholar 

  3. Blackett M, Wooster MJ, Malamud B (2011) Exploring claims of land surface temperature precursors to the 2001 Gujarat earthquake. Geophys Res Lett 38:L15303. doi:10.1029/2011GL048282

    Google Scholar 

  4. Drusch M, Mecklenburg S, Kerr Y (2012) SMOS over land, European Space Agency, B152: 39–49. . Accessed 30 August 2016

  5. Eastman JR, Fulk M (1993) Long sequence time series evaluation using standardized principal components. Photogramm Eng Remote Sens 59:1307–1312

    Google Scholar 

  6. Farr TG, Kobrick M (2000) Shuttle radar topography mission produces a wealth of data. Am Geophys Union Eos 81:583–585

    Article  Google Scholar 

  7. Freund FT, Takeuchi A, Lau BS, Al-Manaseer A, CC F, Bryant NA, Ouzounov D (2007) Stimulated infrared emission from rocks: assessing a stress indicator. eEarth 2:7–16

    Article  Google Scholar 

  8. Friedl MA, Sulla-Menashe D, Tan B, Schneider A, Ramankutty N, Sibley A, Huang X (2010) MODIS collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens Environ 114:168–182

    Article  Google Scholar 

  9. Hertel TW, Burke MB, Marshall B, Lobell DB (2010) The poverty implications of climate-induced crop yield changes by 2030. Glob Environ Chang 20:577–585

    Article  Google Scholar 

  10. Houborg R, Rodell M, Li B, Reichle R, Zaitchik B (2012) Drought indicators based on model assimilated GRACE terrestrial water storage observations, water. Resources. Research 48:W07525. doi:10.1029/2011WR011291

    Google Scholar 

  11. Landam S, Everitt BS (2004) A Handbook for Statistical Analyses Using SPSS. Chapman & Hall/CRC Press, New York

    Google Scholar 

  12. Lillesand TM, Kiefer RW, Chipman JW (2004) Remote sensing and image interpretation, 5th edn. John Wiley, New York

    Google Scholar 

  13. Maaten L, Hinton G (2008) Visualizing high-dimensional data using t-SNE. J Mach Learn Res 9:2579–2605

    Google Scholar 

  14. Mather PM, Koch M (2011) Computer processing of remotely-sensed images, 4th edn. John Wiley and Sons, New York

    Book  Google Scholar 

  15. MCD12Q1 (2015) MODIS/Combined (Terra + Aqua) Land Cover Type Yearly L3 Global 500 m SIN Grid. U.S. Geological Survey, LP DAAC. Accessed 30 August 2016

  16. Miliaresis G (2009) Regional thermal and terrain modeling of the afar depression from multi-temporal night LST data. Int J Remote Sens 30:2429–2446

  17. Miliaresis G (2012a) Selective variance reduction of multi-temporal LST imagery in the East Africa rift system. Earth Sci Inf 5:1–12

    Article  Google Scholar 

  18. Miliaresis G (2012b) Elevation, latitude/longitude decorrelation stretch of multi-temporal LST imagery. Photogramm Eng Remote Sens 7:151–160

    Article  Google Scholar 

  19. Miliaresis G (2013a) Terrain analysis for active tectonic zone characterization, a new application for MODIS night LST (MYD11C3) dataset. Int J Geogr Inf Sci 27:1417–1432

    Article  Google Scholar 

  20. Miliaresis G (2013b) Thermal anomaly mapping from night MODIS imagery of USA, a tool for environmental assessment. Environ Monit Assess 185:1601–1612

    Article  Google Scholar 

  21. Miliaresis G (2014) Daily Temperature Oscillation Enhancement of Multi-temporal LST Imagery. Photogramm Eng Remote Sens 80:423–428

    Article  Google Scholar 

  22. Miliaresis G (2016a) An unstandardized selective variance reduction script for elevation, latitude & longitude decorrelation stretch of multi-temporal LST imagery. Modeling Earth Systems & Environment 2. doi:10.1007/s40808–016–0103-0

  23. Miliaresis G (2016b) SourceForge Project: svr-py, Selective Variance Reduction MeGa py script with clustering & classification support Accessed 30 August 2016

  24. Miliaresis G (2016c) SourceForge Project: selective-variance-reduction. Octave Implementation. Accessed 30 August 2016

  25. Miliaresis G (2016d) SourceForge Project: test-sites-datasets Accessed 30 August 2016

  26. Miliaresis G (2016e) Revealing the precipitation dependency of regional in time and in space thermal anomaly peaks in SW USA. Model Earth Syst Environ 2. doi:10.1007/s40808–016-0093-y

  27. Miliaresis G (2016f) Spatial decorrelation stretch of annual (2003–2014) Daymet precipitation summaries on a 1-km grid for California, Nevada, Arizona & Utah Environmental Monitoring & Assessment, 188. doi:10.1007/s10661–016–5365-5

  28. Miliaresis G, Argialas D (1999) Segmentation of Physiographic Features from the Global Digital Elevation Model/GTOPO30. Comput Geosci 25:715–728

    Article  Google Scholar 

  29. Miliaresis G, Argialas D (2000) Extraction & Delineation of Alluvial Fans from DΕμs & Landsat TM Images. Photogramm Eng Remote Sens 66:1093–1101

    Google Scholar 

  30. Miliaresis G, Seymour KST (2011) Mapping the spatial & temporal SST variations in Red Sea, revealing a probable regional geothermal anomaly from Pathfinder V5 data. Int J Remote Sens 32:1825–1842

    Article  Google Scholar 

  31. Miliaresis G, Tsatsaris A (2010) Thermal terrain modeling of spatial objects, a tool for environmental and climatic change assessment. Environ Monit Assess 164:561–572

    Article  Google Scholar 

  32. Miliaresis G, Tsatsaris A (2011) Mapping the spatial and temporal pattern of day-night temperature difference in Greece from MODIS imagery. GIsci Remote Sens 48:210–224

    Article  Google Scholar 

  33. MYD11A2 (2015). MODIS/Aqua Land Surface Temperature and Emissivity 8-Day L3 Global 1 km. U.S. Geological Survey, LP DAAC. Accessed 30 August 2016

  34. MYD11C3 (2015) MODIS/Aqua Land Surface Temperature and Emissivity Monthly L3 Global 0.05 Deg CMG. U.S. Geological Survey, LP DAAC. Accessed 30 August 2016

  35. Nash GD, Johnson GW (2003) Conceptualization and implementation of a tectonic geomorphology study for geothermal exploration in the Great Basin. U.S.a. transactions - geothermal. Resources 27:663–667

    Google Scholar 

  36. Ouzounov D, Liu D, Kang C, Cervone G, Kafatos M, Taylor P (2007) Outgoing long wave radiation variability from IR satellite data prior to major earthquakes. Tectonophysics 431:211–220

    Article  Google Scholar 

  37. Piroddi L, Ranieri G, Freund FT, Trogu A (2014) Geology, tectonics and topography underlined by L’Aquila earthquake TIR precursors. Geophys J Int 197:1532–1536. doi:10.1093/gji/ggu123

    Article  Google Scholar 

  38. Siljestrom PA, Moreno A, Vikgren G, Caceres LM (1997) The application of selective principal components analysis to a thematic mapper image for the recognition of geomorphologic features configuration. Int J Remote Sens 18:3843–3852

    Article  Google Scholar 

  39. Snyder J (1987) Map Projections—A Working Manual. USGS Professional Paper 1395. Accessed 30 August 2016

  40. SRTM30 (2009) Near Global Digital elevation model. US Geological Survey. Accessed 30 August 2016

  41. Tester JW, Anderson BJ, Batchelor AS, Blackwell D, DiPippo R, Drake EM, Garnish J, Livesay B, Moore MC, Nichols K, Petty S, Toksoz MN, Veatch RW, Baria R, Augustine C, Murphy E, Negraru P, Richards M (2007) Impact of enhanced geothermal systems on US energy supply in the twenty-first century. Phil Trans R Soc A 365:1057–1094. doi:10.1098/rsta.2006.1964

    Article  Google Scholar 

  42. Thornton PE, Running SW, MA W (1997) Generating surfaces of daily meteorological variables over large regions of complex terrain. J Hydrol 190:214–251

    Article  Google Scholar 

  43. Turnbull MH, Murthy R, Griffin KL (2002) The relative impacts of daytime and night-time warming on photosynthetic capacity in Populus detoides. Plant Cell Environ 25:1729–1737

    Article  Google Scholar 

  44. Wan Z (2008) New refinements and validation of the MODIS land-surface temperature/emissivity products. Remote Sens Environ 112:59–74

    Article  Google Scholar 

  45. Wan Z (2013) MODIS Land Surface Temperature Products Users’ Guide, Collection-6. ICESS, University of California, Santa Barbara. Accessed 30 August 2016

  46. Wan Z (2014) New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity products. Remote Sens Environ 140:36–45

    Article  Google Scholar 

  47. Zouzias D, Miliaresis G, Seymour KST (2011) Probable regional geothermal field reconnaissance in the Aegean region from modern multi-temporal night LST imagery. Environ Earth Sci 62:717–723

    Article  Google Scholar 

Download references


The author is grateful to the 2 anonymous reviewers for their corrections, comments and suggestions during the revision process.

Author information



Corresponding author

Correspondence to George Ch. Miliaresis.

Additional information

Communicated by: H. A. Babaie

Electronic supplementary material


(PDF 520 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miliaresis, G.C. Iterative selective spatial variance reduction of MYD11A2 LST data. Earth Sci Inform 10, 15–27 (2017).

Download citation


  • Land surface temperature
  • Environmental terrain analysis
  • Thermal anomaly mapping
  • Geothermal processes
  • Great Basin section