Skip to main content
Log in

New variogram modeling method using MGGP and SVR

  • Methodology Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

A critical step for kriging in geostatistics is estimation of the variogram. Traditional variogram modeling comprise of the experimental variogram calculation, appropriate variogram model selection and model parameter determination. Selecting of the variogram model and fitting of model parameters is the most controversial aspect of geostatistics. Shapes of valid variogram models are finite, and sometimes, the optimal shape of the model can not be fitted, leading to reduced estimation accuracy. In this paper, a new method is presented to automatically construct a model shape and fit model parameters to experimental variograms using Support Vector Regression (SVR) and Multi-Gene Genetic Programming (MGGP). The proposed method does not require the selection of a variogram model and can directly provide the model shape and parameters of the optimal variogram. The validity of the proposed method is demonstrated in a number of cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Al-Ahmari A (2007) Predictive machinability models for a selected hard material in turning operations. J Mater Process Technol 190:305–311. doi:10.1016/j.jmatprotec.2007.02.031

    Article  Google Scholar 

  • Atteia O, Dubois JP, Webster R (1994) Geostatistical analysis of contamination in the Swiss Jura. Environ Pollut 86:315–327

    Article  Google Scholar 

  • Basak S, Dixit U, Davim J (2007) Application of radial basis function neural networks in optimization of hard turning of AISI D2 cold-worked tool steel with a ceramic tool. Proc Inst Mech Eng B J Eng Manuf 221:987–998

    Article  Google Scholar 

  • Byvatov E, Schneider G (2003) Support vector machine applications in bioinformatics. Appl Bioinforma 2:67–77

    Google Scholar 

  • Çaydas U, Ekici S (2012) Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel. J Intell Manuf 23:639–650. doi:10.1007/s10845-010-0415-2

    Article  Google Scholar 

  • Çaydaş U, Hasçalık A (2008) A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method. J Master Process Technol 202(1):574–582. doi:10.1016/j.jmatprotec.2007.10.024

    Article  Google Scholar 

  • Cevik A, Guzelbey IH (2007) A soft computing based approach for the prediction of ultimate strength of metal plates in compression. Eng Struct 29:383–394. doi:10.1016/j.engstruct.2006.05.005

    Article  Google Scholar 

  • Cevik A, Sonebi M (2008) Modelling the performance of self-compacting SIFCON of cement slurries using genetic programming technique. Comput Concr 5:475–491

    Article  Google Scholar 

  • Chen YK, Yang YG, Wu WW (2015) Coal seam thickness prediction based on least squares support vector machines and kriging method. Electron J Geotech Eng 20(1):167–176

    Google Scholar 

  • Chilès JP, Delfiner P (2012) Geostatistics: Modeling spatial uncertainty, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Clark I (1979) Practical geostatistics. Applied Science Publishers, Essex

    Google Scholar 

  • Clark I (1983) Regression revisited. Math Geol 15(4):517–536

    Article  Google Scholar 

  • Clark I, Harper WV (2000) Practical geostatistics 2000. Greyden Press, Ecosse North America

    Google Scholar 

  • Cressie N (1985) Fitting variogram models by weighted least squares. Math Geol 17(5):563–586

    Article  Google Scholar 

  • Cressie N (1991) Statistics for spatial data. Wiley, New York

    Google Scholar 

  • Desassis N, Renard D (2013) Automatic variogram modeling by iterative least squares: univariate and multivariate cases. Math Geosci 45:453–470. doi:10.1007/s11004-012-9434-1

    Article  Google Scholar 

  • Deutsch CV, Journel AG (1998) GSLIB: geostatistical software library and user’s guide, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Emery X (2010) Iterative algorithms for fitting a linear model of coregionalization. Comput Geosci 36:1150–1160. doi:10.1016/j.cageo.2009.10.007

    Article  Google Scholar 

  • Fernández-Casal R, Francisco-Fernández M (2014) Nonparametric bias-corrected variogram estimation under non-constant trend. Stoch Environ Res Risk Assess 28:1247–1259. doi:10.1007/s00477-013-0817-8

    Article  Google Scholar 

  • Gandomi AH, Alavi AH (2011) Multi-stage genetic programming: a new strategy to nonlinear system modeling. Inf Sci 181:5227–5239. doi:10.1016/j.ins.2011.07.026

    Article  Google Scholar 

  • Gandomi AH, Alavi AM (2012) A new multi-gene genetic programming approach to non-linear system modeling. Part II: geotechnical and earthquake engineering problems. Neural Comput Applic 21:189–201. doi:10.1007/s00521-011-0735-y

    Article  Google Scholar 

  • Gandomi AH, Alavi AH, Mousavi M, Tabatabaei SM (2011) A hybrid computational approach to derive new ground-motion prediction equations. Eng Appl Artif Intell 24:717–732. doi:10.1016/j.engappai.2011.01.005

    Article  Google Scholar 

  • Garg A, Tai K (2012) Review of genetic programming in modeling of machining processes. In: Proceedings of the 2012 I.E. International Conference on Modelling, Identification and Control (ICMIC2012). Wuhan, China, 24–26 June 2012, pp. 653–658

  • Garg A, Tai K (2013) Comparison of statistical and machine learning methods in modeling of data with multicollinearity. Int J Model Identif Control 18(4):295–312

    Article  Google Scholar 

  • Garg A, Tai K (2014) Stepwise approach for the evolution of generalized genetic programming model in prediction of surface finish of the turning process. Adv Eng Softw 78:16–27. doi:10.1016/j.advengsoft.2014.08.005

    Article  Google Scholar 

  • Garg A, Bhalerao Y, Tai K (2013a) Review of empirical modeling techniques for modeling of turning process. Int J Model Idenfit Control 20(2):121–129. doi:10.1504/IJMIC.2013.056184

    Article  Google Scholar 

  • Garg A, Rachmawati L, Tai K (2013b) Classification-driven model selection approach of genetic programming in modeling of turning process. Int J Adv Manuf Technol 69:1137–1151. doi:10.1007/s00170-013-5103-x

    Article  Google Scholar 

  • Garg A, Garg A, Tai K, Sreedeep S (2014a) An integrated SRM-multi-gene genetic programming approach for prediction of factor of safety of 3-D soil nailed slopes. Eng Appl Artif Intell 30:30–40. doi:10.1016/j.engappai.2013.12.011

    Article  Google Scholar 

  • Garg A, Garg A, Tai K (2014b) A multi-gene genetic programming model for estimating stress-dependent soil water retention curves. Comput Geosci 18:45–56. doi:10.1007/s10596-013-9381-z

    Article  Google Scholar 

  • Garg A, Tai K, Gupta AK (2014c) A modified multi-gene genetic programming approach for modeling true stress of dynamic strain aging regime of austenitic stainless steel 304. Meccanica 49:1193–1209. doi:10.1007/s11012-013-9873-x

    Article  Google Scholar 

  • Garg A, Tai K, Lee CH, Savalani MM (2014d) A hybrid M5′-genetic programming approach for ensuring greater trustworthiness of prediction ability in modeling of FDM process. J Intell Manuf 25(6):1349–1366. doi:10.1007/s10845-013-0734-1

    Article  Google Scholar 

  • Genton MG (1998) Variogram fitting by generalized least squares using an explicit formula for the covariance structure. Math Geol 30(4):323–345

    Article  Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York

    Google Scholar 

  • Goovaerts P, Webster R, Dubois JP (1997) Assessing the risk of soil contamination in the Swiss Jura using indicator geostatistics. Environ Ecol Stat 4:31–48

    Article  Google Scholar 

  • Gupta AK (2008) Predictive modeling of turning operations using response surface methodology, artificial neural networks and support vector regression. Int J Prod Res 48:763–778. doi:10.1080/00207540802452132

    Article  Google Scholar 

  • Hadi Y, Ahmed SG (2006) Assessment of surface roughness model for turning process. Knowledge enterprise: intelligent strategies in product design. Manuf Manag 207:152–158

    Google Scholar 

  • Hearst MA, Dumais S, Osman E, Platt J, Scholkopf B (1998) Support vector machines. Intell Syst Appl IEEE 13:18–28

    Article  Google Scholar 

  • Hilário M, Manuela SM (2011) Combining robustness with efficiency in the estimation of variogram. Math Geosci 43:363–377. doi:10.1007/s11004-010-9308-3

    Article  Google Scholar 

  • Huang ZS, Wang HZ, Zhang R (2012) An improved kriging interpolation technique based on SVM and its recovery experiment in oceanic missing data. Am J Comput Math 2:56–60. doi:10.4236/ajcm.2012.21007

    Article  Google Scholar 

  • Jian X, Olea RA, Yu YS (1996) Semivariogram modeling by weighted least squares. Comput Geosci 22:387–397

    Article  Google Scholar 

  • Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic, London

    Google Scholar 

  • Kecman V (2001) Learning and soft computing: support vector machines, neural networks, and fuzzy logicmodels. MIT Press, Cambridge

    Google Scholar 

  • Kerry R, Oliver MA (2007) Sampling requirements for variograms of soil properties computed by the method of moments and residual maximum likelihood. Geoderma 140(4):383–396. doi:10.1016/j.geoderma.2007.04.019

    Article  Google Scholar 

  • Kitanidis PK (1983) Statistical estimation of polynomial generalized covariance functions and hydrologic applications. Water Resour Res 19(4):909–921

    Article  Google Scholar 

  • Kitanidis PK (1997) Introduction to geostatistics: applications to hydrology. Cambridge University Press, New York

    Book  Google Scholar 

  • Koza JR (1994) Genetic Programming. II: Automatic Discovery of Reusable Programs. MIT, Cambridge

    Google Scholar 

  • Lahiri S, Lee Y, Cressie N (2002) On asymptotic distribution and asymptotic efficiency of least squares estimators of spatial variogram parameters. J Stat Plan Inference 103(1):65–85. doi:10.1016/S0378-3758(01)00198-7

    Article  Google Scholar 

  • Lark RM (2000) Estimating variogram of soil properties by the method-of-moments and maximum likelihood. Eur J Soil Sci 51:717–728

    Article  Google Scholar 

  • Lark RM (2012) Towards soil geostatistics. Spat Stat 1:92–99. doi:10.1016/j.spasta.2012.02.001

    Article  Google Scholar 

  • Lark RM, Webster R (2006) Geostatistical mapping of geomorphic surfaces in the presence of trend. Earth Surf Process Landf 31(7):862–874. doi:10.1002/esp.1296

    Article  Google Scholar 

  • Lark RM, Cullis BR, Welham SJ (2006) On optimal prediction of soil properties in the presence of trend: the empirical best linear unbiased predictor (E-BLUP) with REML. Eur J Soil Sci 57(6):787–799. doi:10.1111/j.1365-2389.2005.00768.x

    Article  Google Scholar 

  • Li SH, Lu WT (2010) Automatic fit of the variogram. Third International Conference on Information and Computing (ICIC) 4:129–132. doi:10.1109/ICIC.2010.303

  • Madár J, Abonyi J, Szeifert F (2005) Genetic programming for the identification of nonlinear input–output models. Ind Eng Chem Res 44:3178–3186

    Article  Google Scholar 

  • Marchant BP, Lark RM (2007a) The Matérn variogram model: implications for uncertainty propagation and sampling in geostatistical surveys. Geoderma 140(4):337–345. doi:10.1016/j.geoderma.2007.04.016

    Article  Google Scholar 

  • Marchant BP, Lark RM (2007b) Robust estimation of the variogram by residual maximum likelihood. Geoderma 140(1):62–72. doi:10.1016/j.geoderma.2007.03.005

    Article  Google Scholar 

  • Mardia KV, Marshall RJ (1984) Maximum likelihood estimation of models for residual covariance in spatial regression. Biometrika 71(1):135–146

    Article  Google Scholar 

  • Matheron G (1962) Traite de geostatistique appliqué, vol I. Memoires du bureau de recherches geologiques et minieres, no 14. Editions Technip, Paris

    Google Scholar 

  • Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246–1266

    Article  Google Scholar 

  • McBratney AB, Webster R (1986) Choosing functions for semivariograms of soil properties and fitting them to sampling estimates. J Soil Sci 37:617–639

    Article  Google Scholar 

  • Minasny B, McBratney AB (2005) The Matern function as a general model for soil variograms. Geoderma 128:192–207

    Article  Google Scholar 

  • Oliver MA (2010) Ch. B6: the variogram and kriging. In: Fischer MM, Getis A (eds) Handbook of applied spatial analysis: software tools, methods and applications. Springer, Berlin, pp 319–352. doi:10.1007/978-3-642-0364-7_17

    Chapter  Google Scholar 

  • Oliver MA, Webster R (2014) A tutorial guide to geostatistics: computing and modeling variograms and kriging. Catena 113:56–59. doi:10.1016/j.catena.2013.09.006

    Article  Google Scholar 

  • Pannatier Y (1996) Variowin: software for spatial analysis in 2D. Springer, New York

    Book  Google Scholar 

  • Pardo-Igúzquiza E, Dowd PA (2001) Variance-covariance matrix of the experimental variogram: assessing variogram uncertainty. Math Geol 33:397–419

    Article  Google Scholar 

  • Pelckmans K, Suykens JAK, Vangestel T, De Brabanter D, Lukas J, Hamers B et al (2002) LS-SVMlab: a matlab/c toolbox for least squares support vector machines. Tutorial. KULeuven-ESAT, Leuven

    Google Scholar 

  • Pyrcz MJ, Deutsch CV (2006) Semivariogram models based on geometric offsets. Math Geol 38(4):475–488. doi:10.1007/s11004-005-9025

    Article  Google Scholar 

  • Ricardo AO (2006) A six-step practical approach to semivariogram modeling. Stoch Environ Res Risk Assess 20:307–318. doi:10.1007/s00477-005-0026-1

    Article  Google Scholar 

  • Salgado DR, Alonso FJ (2007) An approach based on current and sound signals for in-process tool wear monitoring. Int J Mach Tools Manuf 47(14):2140–2152. doi:10.1016/j.ijmachtools.2007.04.013

    Article  Google Scholar 

  • Salgado DR, Alonso FJ, Cambero I, Marcelo A (2009) In-process surface roughness prediction system using cutting vibrations in turning. Int J Adv Manuf Technol 43:40–51. doi:10.1007/s00170-008-1698-8

    Article  Google Scholar 

  • Saptoro A, Tade MO, Vuthaluru H (2012) A modified Kennard-Stone algorithm for optimal division of data for developing artificial neural network models. Chem Prod Process Model 7(1):13. doi:10.1515/1934-2659.1645

    Google Scholar 

  • Searson DP, Leahy DE, Willis MJ (2010) GPTIPS: an open source genetic programming toolbox for multigene symbolic regression. Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS 2010), Hong Kong, 1, pp. 77–80

  • Shi D, Gindy NN (2007) Tool wear predictive model based on least squares support vector machines. Mech Syst Signal Process 21(4):1799–1814. doi:10.1016/j.ymssp.2006.07.016

    Article  Google Scholar 

  • Stein ML (1988) Asymptotic distributions of minimum norm quadratic estimators of the covariance function. Ann Stat 16:55–63

    Article  Google Scholar 

  • Suykens JAK, Vannderwalle J, Moor BD (2001) Optimal control by Least squares support vector machine. Neural Netw 14(1):23–35. doi:10.1016/S0893-6080(00)00077-0

    Article  Google Scholar 

  • Vapnik V (1995) The nature of statistical learning. Springer, New York

    Book  Google Scholar 

  • Wackernagel H (2003) Multivariate geostatistics, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Wang B, Yao M, Zhu R (2011) Gene expression programming with multiple chromosomes. Int J Model Identif Control 14:235–241. doi:10.1504/IJMIC.2011.043144

    Article  Google Scholar 

  • Webster R, Oliver MA (2007) Geostatistics for environmental scientists, 2nd edn. Wiley, Chichester

    Book  Google Scholar 

  • Webster R, Atteia O, Dubois JP (1994) Coregionalization of trace metals in the soil in the Swiss Jura. Eur J Soil Sci 45:205–218

    Article  Google Scholar 

  • Zhang H, Zimmerman DL (2007) Hybrid estimation of semivariogram parameters. Math Geol 39(2):247–260. doi:10.1007/s11004-006-9070-8

    Article  Google Scholar 

  • Zimmerman DL (1989) Computationally efficient restricted maximum likelihood estimation of generalized covariance functions. Math Geol 21(7):655–672

    Article  Google Scholar 

Download references

Acknowledgments

This study was jointly supported by the Research of High-grade Iron Ore Formation Mechanism and Prediction of China (2012CB416800) and the Fundamental Research Funds for the Graduate Innovation State Education Ministry (N110601002). We are very grateful to Dr Isobel Clark and Dr Pierrre Goovaerts who made geostatistical data available on the internet. We are thankful to three of anonymous reviewers for their constructive comments. We are also very grateful to Earth Science Informatics editor, Dr. Hassan A. Babaie. Their careful review and editorial comments were very useful for the preparation of a revised version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changik Han.

Additional information

Communicated by: H. A. Babaie

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, C., Wang, J., Zheng, M. et al. New variogram modeling method using MGGP and SVR. Earth Sci Inform 9, 197–213 (2016). https://doi.org/10.1007/s12145-016-0251-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-016-0251-9

Keywords

Navigation