Skip to main content
Log in

Knowledge-based environmental research infrastructure: moving beyond data

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Over the past decades, sensor networks have been deployed around the world to monitor over time and space a large number of properties appertaining to various environmental phenomena. A popular example is the monitoring of particulate matter and gases in ambient air undertaken, for instance, to assess air quality and inform decision makers and the public. Such infrastructure can generate large amounts of data, which must be processed to derive useful information. Infrastructure may be for environmental research, specifically. In order to reduce duplication and improve interoperability, efforts have been initiated more recently that aim at abstract architectural descriptions of infrastructure that supports the acquisition, curation, access, and processing of measurement and observation data. The ENVRI Reference Model (ENVRI-RM) is an example for an abstract architectural description of infrastructure tailored for environmental research. We briefly summarize ENVRI-RM and provide an overview of its subsystems, functionality, and viewpoints. We highlight that its primary focus is on the data life-cycle in environmental research infrastructure. As our contribution, weextend ENVRI-RM with functionality for the acquisition of knowledge from data, and the curation, access, and processing of knowledge. The extension, which we name +K, aims at addressing the knowledge life-cycle in environmental research infrastructure. We present the +K subsystems and functionality, and discuss the extension from ENVRI-RM viewpoints. We argue that the +K extension can be superimposed on ENVRI-RM to form the ENVRI-RM+K model for the ‘archetypical’ knowledge-based environmental research infrastructure that addresses both data and knowledge life-cycles. We demonstrate the application of the extension to a concrete use case in aerosol science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. http://www.coopeus.eu/

  2. http://www.atm.helsinki.fi/SMEAR/

  3. http://envri.eu/

  4. http://www.envri.eu/rm

  5. http://www.w3.org/2001/sw/

  6. http://stardog.com

  7. http://jena.apache.org

  8. http://www.profium.com/en/technologies/profium-sense

  9. http://rdf4j.org/

  10. http://clarkparsia.com/pellet/

  11. http://hermit-reasoner.com/

References

  • Aamodt A, Nygård M (1995) Different roles and mutual dependencies of data, information, and knowledge – An AI perspective on their integration. Data Knowledge Eng 16(3):191–222. doi:10.1016/0169-023X(95)00017-M. http://www.sciencedirect.com/science/article/pii/0169023X9500017M

    Article  Google Scholar 

  • Baader F, Calvanese D, McGuinness D, Nardi D, Patel-Schneider P (2007) The Description Logic Handbook Theory Implementation and Applications, 2nd Edition. Cambridge University Press

  • Barwise J, Perry J (1980) The Situation Underground. In: Barwise J, Sag I (eds) Stanford Working Papers in Semantics vol 1, Stanford Cognitive Science Group, pp 1–55

  • Barwise J, Perry J (1981) Situations and Attitudes. The Journal of Philosophy 78(11):668–691. http://www.jstor.org/stable/2026578

    Article  Google Scholar 

  • Berners-Lee T, Hendler J, Lassila O (2001) The Semantic Web. Scientific American 284(5):29–37

    Article  Google Scholar 

  • Brickley D, Guha R (2004) RDF Vocabulary Description Language 1.0: RDF Schema. Recommendation, W3C. http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

  • Brickley D, Guha R (2014) RDF Schema 1.1. Recommendation, W3C. http://www.w3.org/TR/2014/REC-rdf-schema-20140225/

  • Chen Y, Hardisty A, Preece A, Martin P, Atkinson M, Zhao Z, Magagna B, Schentz H, Legré Y (2013a) Analysis of Common Requirements for Environmental Science Research Infrastructures. In: Proceedings of the International Symposium on Grids and Clouds (ISGC), Proceedings of Science (SISSA), Academia Sinica, Taipei, Taiwan

  • Chen Y, Martin P, Magagna B, Schentz H, Zhao Z, Hardisty A, Preece A, Atkinson M, Huber R, Legré Y (2013b) A Common Reference Model for Environmental Science Research Infrastructures . In: Page B, Fleischer AG, Göbel J, Wohlgemuth V (eds) 27th International Conference on Environmental Informatics for Environmental Protection, Sustainable Development and Risk Management, Hamburg, Germany, pp 665–673

  • Clemente S, Loia V, Veniero M (2013) Applying cognitive situation awareness to collision avoidance for harbour last-mile area safety. J Ambient Intell Humanized Comput :1–5. doi:10.1007/s12652-013-0187-6

  • Compton M, Barnaghi P, Bermudez L, Garca-Castro R, Corcho O, Cox S, Graybeal J, Hauswirth M, Henson C, Herzog A, Huang V, Janowicz K, Kelsey WD, Phuoc DL, Lefort L, Leggieri M, Neuhaus H, Nikolov A, Page K, Passant A, Sheth A, Taylor K (2012) The SSN ontology of the W3C semantic sensor network incubator group Web Semantics Science. Serv Agents World Wide Web 17(0):25–32. doi:10.1016/j.websem.2012.05.003

    Article  Google Scholar 

  • Cyganiak R, Reynolds D, Tennison J (2014a) The RDF Data Cube Vocabulary. Recommendation, W3C. http://www.w3.org/TR/2014/REC-vocab-data-cube-20140116/

  • Cyganiak R, Wood D, Lanthaler M (2014b) RDF 1.1 Concepts and Abstract Syntax Recommendation W3C

  • Dal Maso M, Kulmala M, Riipinen I, Wagner R, Hussein T, Aalto P, Lehtinen K (2005) Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytiala, Finland. Boreal EnviroN Res 5:323–336

    Google Scholar 

  • De Maio C, Fenza G, Furno D, Loia V (2012) Swarm-based semantic fuzzy reasoning for situation awareness computing. In: Fuzzy Systems (FUZZ-IEEE), 2012 IEEE International Conference on, pp 1–7. doi:10.1109/FUZZ-IEEE.2012.6251159

  • Devlin K (1991) Logic and Information. Cambridge University Press

  • Doulaverakis C, Konstantinou N, Knape T, Kompatsiaris I, Soldatos J (2011) An Approach to Intelligent Information Fusion in Sensor Saturated Urban Environments. In: Intelligence and Security Informatics Conference (EISIC), 2011 European, pp 108–115

  • Dürst M, Suignard M (2005) Internationalized Resource Identifiers (IRIs). RFC 3987, IETF,. http://www.ietf.org/rfc/rfc3987.txt

  • Endsley MR (1995) Toward a theory of situation awareness in dynamic systems Human Factors. J Hum Factors Ergon Soc 37(1):32–64

    Article  Google Scholar 

  • ENVRI (2013) ENVRI Reference Model V1.1. Tech. Rep. RDTI-RI-283465, ENVRI. http://envri.eu/rm

  • Fenza G, Furno D, Loia V, Veniero M (2010) Agent-based Cognitive approach to Airport Security Situation Awareness. In: Proceedings of the 2010 International Conference on Complex Intelligent and Software Intensive Systems IEEE Computer Society, CISIS ’10, pp 1057–1062

  • Gruber TR (1993) A translation approach to portable ontology specifications. Knowl Acquis 5(2):199–220. doi:10.1006/knac.1993.1008. http://www.sciencedirect.com/science/article/pii/S1042814383710083

    Article  Google Scholar 

  • Hari P, Kulmala M (2005) Station for Measuring Ecosystem-Atmosphere Relations (SMEAR II). Boreal Environ Res 10:315–322

    Google Scholar 

  • Hart JK, Martinez K (2006) Environmental Sensor Networks A revolution in the earth system science?. Earth Sci Rev 78(3-4):177–191. doi:10.1016/j.earscirev.2006.05.001

    Article  Google Scholar 

  • Hobbs JR, Pan F (2006) Time Ontology in OWL Working draft W3C. http://www.w3.org/TR/owl-time/

  • Horrocks I, Patel-Schneider PF, Boley H, Tabet S, Grosof B, Dean M (2004) SWRL: A Semantic Web Rule Language Combining OWL and RuleML. Tech. rep., W3C. http://www.w3.org/Submission/SWRL/

  • Junninen H, Lauri A, Keronen P, Aalto P (2009) Smart-SMEAR: on-line data exploration and visualization tool for SMEAR stations. Boreal Environ Res 14(4):447–457

    Google Scholar 

  • Keller M, Schimel DS, Hargrove WW, Hoffman FM (2008) A continental strategy for the National Ecological Observatory Network. Front Ecol Environ 6(5):282–284. doi:10.1890/1540-9295(2008)6%5B282:ACSFTN%5D2.0.CO;2

    Article  Google Scholar 

  • Kokar MM, Matheus CJ, Baclawski K (2009) Ontology-based situation awareness. Inf Fusion 10(1):83–98

    Article  Google Scholar 

  • Kotamäki N, Thessler S, Koskiaho J, Hannukkala AO, Huitu H, Huttula T, Havento J, Järvenpää M (2009) Wireless in-situ Sensor Network for Agriculture and Water Monitoring on a River Basin Scale in Southern Finland: Evaluation from a Data User’s Perspective. Sens 9(4):2862–2883. doi:10.3390/s90402862. http://www.mdpi.com/1424-8220/9/4/2862

    Article  Google Scholar 

  • Kratz TK, Arzberger P, Benson BJ, Chiu CY, Chiu K, Ding L, Fountain T, Hamilton D, Hanson PC, Hu YH, Lin FP, McMullen DF, Tilak S, Wu C (2006) Toward a Global Lake Ecological Observatory Network. Publ Karelian Inst 145:51–63

    Google Scholar 

  • Kulmala M, Vehkamäki H, Petäjä T, Dal Maso M, Lauri A, Kerminen V, Birmili W, McMurry P (2004) Formation and growth rates of ultrafine atmospheric particles: a review of observations. J Aerosol Sci 35(2):143–176

    Article  Google Scholar 

  • Lassila O, Swick RR (1999) Resource Description Framework (RDF) Model and Syntax Specification Recommendation W3C. http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

  • Lebo T, Sahoo S, McGuinness D (2013) PROV-O: The PROV Ontology W3C Recommendation W3C. http://www.w3.org/TR/prov-o/

  • Li W, Bhatia V, Cao K (2014) Intelligent polar cyberinfrastructure: enabling semantic search in geospatial metadata catalogue to support polar data discovery, Earth Science Informatics pp 1–13

  • Llaves A, Kuhn W (2014) An event abstraction layer for the integration of geosensor data. International Journal of Geographical Information Science

  • Luckham DC (2002) The Power of Events, vol 204. Addison-Wesley Reading

  • Martinez K, Hart JK, Ong R (2004) Environ Sens Netw Comput 37(8):50–56. doi:10.1109/MC.2004.91

    Google Scholar 

  • Perry M, Herring J (2012) OGC GeoSPARQL - A Geographic Query Language for RDF Data. Tech. Rep. OGC 11-052r4, Open Geospatial Consortium

  • Prud’hommeaux E, Seaborne A (2008) SPARQL Query Language for RDF Recommendation W3C. http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/

  • Riker WH (1957) Events and Situations. J Philos 3:57–70. http://www.jstor.org/stable/2022192

    Article  Google Scholar 

  • Shearer R, Motik B, Horrocks I (2008) HermiT: A highly-efficient OWL reasoner. In: Proceedings of the 5th International Workshop on OWL: Experiences and Directions (OWLED 2008), pp 26–27

  • Sirin E, Parsia B, Grau B, Kalyanpur A, Katz Y (2007) Pellet: A practical OWL-DL reasoner Web Semantics Science. Serv Agents World Wide Web 5(2):51–53. doi:10.1016/j.websem.2007.03.004

    Article  Google Scholar 

  • Stanton NA, Stewart R, Harris D, Houghton RJ, Baber C, McMaster R, Salmon P, Hoyle G, Walker G, Young MS, Linsell M, Dymott R, Green D (2006) Distributed situation awareness in dynamic systems: theoretical development and application of an ergonomics methodology. Ergon 49(12-13):1288–1311. doi:10.1080/00140130600612762. pMID: 17008257

    Article  Google Scholar 

  • Stocker M, Rönkkö M, Villa F, Kolehmainen M (2011) The Relevance of Measurement Data in Environmental Ontology Learning. In: Environmental Software Systems. Frameworks of eEnvironment, IFIP Advances in Information and Communication Technology, vol 359, Springer Boston, pp 445–453

  • Stocker M, Rönkkö M, Kolehmainen M (2012) Making Sense of Sensor Data Using Ontology: A Discussion for Road Vehicle Classification. In: Seppelt R, Voinov A, Lange S, Bankamp D (eds) International Congress on Environmental Modelling and Software, iEMSs, Leipzig, Germany, pp 2387–2394

  • Stocker M, Baranizadeh E, Hamed A, Rönkkö M, Virtanen A, Laaksonen A, Portin H, Komppula M, Kolehmainen M (2013) Acquisition and Representation of Knowledge for Atmospheric New Particle Formation. In: Hřebíček J, Schimak G, Kubásek M, Rizzoli AE (eds) Environmental Software Systems. Fostering Information Sharing, IFIP Advances in Information and Communication Technology, vol 413, Springer Berlin Heidelberg, pp 98–108. doi:10.1007/978-3-642-41151-9_10

  • Stocker M, Baranizadeh E, Portin H, Komppula M, Rönkkö M, Hamed A, Virtanen A, Lehtinen K, Laaksonen A, Kolehmainen M (2014a) Representing situational knowledge acquired from sensor data for atmospheric phenomena. Environ Model Softw 58(0):27–47. doi:10.1016/j.envsoft.2014.04.006. http://www.sciencedirect.com/science/article/pii/S1364815214001108

    Article  Google Scholar 

  • Stocker M, Rönkkö M, Kolehmainen M (2014b) Situational knowledge representation for traffic observed by a pavement vibration sensor network. IEEE Trans Intell Transp Syst 15 (4):1441–1450. doi:10.1109/TITS.2013.2296697

    Article  Google Scholar 

  • Taylor K, Leidinger L (2011) Ontology-Driven Complex Event Processing in Heterogeneous Sensor Networks. In: Antoniou G, Grobelnik M, Simperl E, Parsia B, Plexousakis D, Leenheer P, Pan J (eds) The Semanic Web: Research and Applications, Lecture Notes in Computer Science, vol 6644, Springer Berlin Heidelberg, pp 285–299. doi:10.1007/978-3-642-21064-8_20

  • W3C OWL Working Group (2009) OWL 2 Web Ontology Language Document Overview Recommendation W3C. http://www.w3.org/TR/2009/REC-owl2-overview-20091027/

  • W3C OWL Working Group (2012) OWL 2 Web Ontology Language Document Overview Recommendation W3C, Second Edition. http://www.w3.org/TR/2012/REC-owl2-overview-20121211/

Download references

Acknowledgments

This research is funded by the Academy of Finland project “FResCo: High-quality Measurement Infrastructure for Future Resilient Control Systems” (Grant number 264060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Stocker.

Additional information

Communicated by: H. A. Babaie

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stocker, M., Rönkkö, M. & Kolehmainen, M. Knowledge-based environmental research infrastructure: moving beyond data. Earth Sci Inform 9, 47–65 (2016). https://doi.org/10.1007/s12145-015-0230-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-015-0230-6

Keywords

Navigation