Earth Science Informatics

, Volume 8, Issue 3, pp 463–481 | Cite as

Towards intelligent GIServices

  • Peng YueEmail author
  • Peter Baumann
  • Kaylin Bugbee
  • Liangcun Jiang
Research Article


Distributed information infrastructures are increasingly used in the geospatial domain. In the infrastructures, data are being collected by distributed sensor services, served by distributed geospatial data services, transformed by processing services and workflows, and consumed by smart clients. Consequently, Geographical Information Systems (GISs) are moving from GISystems to GIServices. Intelligent GIServices are enriched with new capabilities including knowledge representation, semantic reasoning, automatic workflow composition, and quality and traceability. Such Intelligent GIServices facilitate information discovery and integration over the network and automate the assembly of GIServices to provide value-added products. This paper provides an overview of intelligent GIServices. The concept of intelligent GIServices is described, followed by a review of the state-of-the-art technologies and methodologies relevant to intelligent GIServices. Visions on how GIServices can perceive, reason, learn, and act intelligently are highlighted. The results can provide better services for big data processing, semantic interoperability, knowledge discovery, and cross-discipline collaboration in Earth science applications.


GIServices Intelligent GIServices GIS·Big data Intelligent systems Artificial intelligence 



We are grateful to Dr. Rahul Ramachandran and anonymous reviewers for their constructive comments and suggestions. The work was supported by National Basic Research Program of China (2011CB707105), National Natural Science Foundation of China (91438203 and 41271397), Hubei Science and Technology Support Program (2014BAA087),Program for New Century Excellent Talents in University (NCET-13-0435), and Fundamental Research Funds for the Central Universities (2042014kf0224).


  1. Aalst W, Hofstede A (2005) YAWL: yet another workflow language. Inf Syst 30(4):245–275CrossRefGoogle Scholar
  2. Agrawal D, Das S, El Abbadi A (2011) Big data and cloud computing: current state and future opportunities. In Proceedings of the 14th International Conference on Extending Database Technology, ACM, pp 530–533Google Scholar
  3. Albrecht J (1997) Universal analytical GIS operations: a task-oriented systematization of data structure-independent GIS functionality. In: Craglia M, Onsrud H (eds) Geographic Information research: transatlantic perspectives. Taylor and Francis, London, pp 577–91Google Scholar
  4. Anderson JR (1986) In: Michalski RS, Carbonell JG, Mitchell TM (eds) Machine learning: an artificial intelligence approach, vol 2. Morgan Kaufmann, BurlingtonGoogle Scholar
  5. Arasu A, Babcock B, Babu S, Cieslewicz J, Datar M, Ito K, Motwani R, Srivastava U, Widom J (2004) STREAM: the Stanford data stream management system. Technical report. Stanford InfoLab. 21ppGoogle Scholar
  6. Aslett M (2011) How will the database incumbents respond to NoSQL and NewSQL. San Francisco, The 451, pp 1–5Google Scholar
  7. Atzori L, Iera A, Morabito G (2010) The internet of things: a survey. Comput Netw 54(15):2787–2805CrossRefGoogle Scholar
  8. Baader F, Nutt W (2003) Basic description logics. In: Baader F, Calvanese D, McGuinness D, Nardi D, Patel-Schneider P (eds) The description logic handbook. Theory, implementation and applications. Cambridge University Press, Cambridge, pp 43–95Google Scholar
  9. Barker A, Van Hemert J (2008) Scientific workflow: a survey and research directions. In 7th International Conference Parallel Processing and Applied Mathematics, Gdansk, Poland, September 9–12, 2007, Springer Berlin Heidelberg 4967:746–753Google Scholar
  10. Barnaghi P, Presser M, Moessner K (2010) Publishing linked sensor data. In CEUR Workshop Proceedings: Proceedings of the 3rd International Workshop on Semantic Sensor Networks (SSN), Organised in conjunction with the International Semantic Web Conference 668Google Scholar
  11. Barto AG (1998) Reinforcement learning: an introduction. MIT Press, CambridgeGoogle Scholar
  12. Bastin L, Cornford D, Jones R, Heuvelink G, Pebesma E, Stasch C, Nativi S, Mazzetti P, Williams M (2013) Managing uncertainty in integrated environmental modelling: the UncertWeb framework. Environ Model Software 39:116–134CrossRefGoogle Scholar
  13. Baumann P (2010) The OGC Web Coverage Processing Service (WCPS) standard. Geoinformatica 14(4):447–479CrossRefGoogle Scholar
  14. Baumann P, Dumitru A, Merticariu V, Misev D, Rusu M (2013) Breaking the big data barrier by enhancing on-board sensor flexibility. Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data. ACM 32–36Google Scholar
  15. Baumann P, Mazzetti P, Ungar J, Barbera R, Barboni D, Beccati A, Bigagli L, Boldrini E, Bruno R, Calanducci A, Campalani P, Clements O, Dumitru A, Grant M, Herzig P, Kakaletris G, Laxton J, Koltsida P, Lipskoch K, Mahdiraji A R, Mantovani S, Merticariu V, Messina A, Misev D, Natali S, Nativi S, Oosthoek J, Passmore J, Pappalardo M, Rossi A P, Rundo F, Sen M, Sorbera V, Sullivan D, Torrisi M, Trovato L, Veratelli M G, Wagner S (2014) Big data analytics for earth sciences: the EarthServer approach. Int J Digital Earth (submitted)Google Scholar
  16. Bernard L, Mäs S, Müller M, Henzen C, Brauner J (2014) Scientific geodata infrastructures: challenges, approaches and directions. Int J Digital Earth 7(7):613–633CrossRefGoogle Scholar
  17. Berners-Lee T (1998) Semantic Web road map. Accessed 31 August 2014
  18. Berners-Lee T (2006) Linked Data [Online]. Accessed 31 August 2014
  19. Berrick S, Leptoukh G, Farley J, Rui H (2009) Giovanni: a web service workflow-based data visualization and analysis system. IEEE Trans Geosci Remote Sens 47(1):106–113CrossRefGoogle Scholar
  20. Bhatnagar RK, Kanal LN (1986) Handling uncertain information: a review of numeric and non-numeric methods. In: Kanal LN, Lemmer JF (eds) Uncertainty in AI. Elsevier North-Holland, New York, pp 3–26Google Scholar
  21. Bizer C, Heath T, Idehen K, Berners-Lee T (2008) Linked data on the web. In: Proceedings of the 17th international conference on World Wide Web, ACM, Beijing 1265–1266Google Scholar
  22. Boccaletti S, Bianconi G, Criado R, Del Genio C I, Gómez-Gardeñes J, Romance M, Zanin M (2014). The structure and dynamics of multilayer networks. Physics ReportsGoogle Scholar
  23. Booth D, Haas H, McCabe F, Newcomer E, Champion M, Ferris C, Orchard D (2004) Web services architecture. W3C Working Group Note 11 February 2004, W3C. Accessed 31 August 2014
  24. Botts M, Percivall G, Reed C, Davidson J (2008) OGC® sensor web enablement: overview and high level architecture. In GeoSensor networks, Springer Berlin Heidelberg 175–190Google Scholar
  25. Boulos MNK, Warren J, Gong J, Yue P (2010) Web GIS in practice VIII: HTML5 and the canvas element for interactive online mapping. Int J Health Geogr 9(1):14CrossRefGoogle Scholar
  26. Bradley ES, Roberts DA, Dennison PE, Green RO, Eastwood M, Lundeen SR, Leifer I (2011) Google earth and Google fusion tables in support of time-critical collaboration: mapping the deepwater horizon oil spill with the AVIRIS airborne spectrometer. Earth Sci Inf 4(4):169–179CrossRefGoogle Scholar
  27. Bröring A, Echterhoff J, Jirka S et al (2011a) New generation sensor web enablement. Sensors 11(3):2652–2699CrossRefGoogle Scholar
  28. Bröring A, Maué P, Janowicz K, Nüst D, Malewski C (2011b) Semantically-enabled sensor plug & play for the sensor web. Sensors 11(8):7568–7605CrossRefGoogle Scholar
  29. Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Futur Gener Comput Syst 25(6):599–616CrossRefGoogle Scholar
  30. Castronova AM, Goodall JL, Elag MM (2013) Models as web services using the open geospatial consortium (ogc) web processing service (wps) standard. Environ Model Software 41:72–83CrossRefGoogle Scholar
  31. Cattell R (2011) Scalable SQL and NoSQL data stores. ACM SIGMOD Rec 39(4):12–27CrossRefGoogle Scholar
  32. Chen H, Chiang RH, Storey VC (2012) Business intelligence and analytics: from big data to big impact. MIS Q 36(4):1165–1188Google Scholar
  33. Chen N, Chen X, Wang K, Niu X (2013) Progress and challenges in the architecture and service pattern of earth observation sensor Web for digital earth. Int J Digital Earth 17. doi: 10.1080/17538947.2013.834385
  34. Cios KJ, Pedrycz W, Swiniarsk RM (1998) Data mining methods for knowledge discovery. IEEE Trans Neural Netw 9(6):1533–1534CrossRefGoogle Scholar
  35. Clark DA (1990) Numerical and symbolic approaches to uncertainty management in AI. Artif Intell Rev 4:109–146CrossRefGoogle Scholar
  36. Condie T, Mineiro P, Polyzotis N, Weimer M (2013) Machine learning for big data. In Proceedings of the 2013 international conference on Management of data, ACM 939–942Google Scholar
  37. Cox S, Schade S (2010) Linked data: what does it offer earth sciences?. In EGU General Assembly Conference Abstracts 12:2079Google Scholar
  38. de Jesus J, Walker P, Grant M, Groom S (2012) WPS orchestration using the Taverna workbench: the eScience approach. Comput Geosci 47:75–86CrossRefGoogle Scholar
  39. Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters. Commun ACM 51(1):107–113CrossRefGoogle Scholar
  40. Di L (2007) Geospatial sensor web and self-adaptive Earth predictive systems (SEPS). In Proceedings of the Earth Science Technology Office (ESTO)/Advanced Information System Technology (AIST) Sensor Web Principal Investigator (PI) Meeting, San Diego, USA, pp. 1–4Google Scholar
  41. Di L, Moe K, van Zyl TL (2010) Earth observation sensor web: an overview. IEEE J Sel Top Appl Earth Obs Remote Sens 3(4):415–417CrossRefGoogle Scholar
  42. Di L, Yue P, Ramapriyan HK, King RL (2013) Geoscience data provenance: an overview. IEEE Trans Geosci Remote Sens 51(11):5065–5072CrossRefGoogle Scholar
  43. Dumitru A, Merticariu V, Baumann P (2014) exploring cloud opportunities from an array database perspective. Proc ACM SIGMOD workshop on data analytics in the cloud (DanaC’2014), June 22–27, 2014, Snowbird, USA 1–4Google Scholar
  44. Echterhoff J, Everding T (2011) OGC Event service-review and current state. Version . OGC 11-088r1. Open Geospatial Consortium, Inc. 33 ppGoogle Scholar
  45. Egenhofer MJ (2002) Toward the semantic geospatial Web. In Proceedings of the 10th ACM International Symposium on Advances in Geographic Information Systems, Mclean, VA, USA, 8–9 November 2002, pp 1–4Google Scholar
  46. Evangelidis K, Ntouros K, Makridis S, Papatheodorou C (2014) Geospatial services in the cloud. Comput Geosci 63:116–122CrossRefGoogle Scholar
  47. Fan M, Fan H, Chen N, Chen Z, Du W (2013) Active on-demand service method based on event-driven architecture for geospatial data retrieval. Comput Geosci 56:1–11CrossRefGoogle Scholar
  48. Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery in databases. AI Mag 17(3):37Google Scholar
  49. Fielding RT (2000) Architectural styles and the design of network-based software architectures. Dissertation, University of California, Accessed 31 August 2014
  50. Filipponi L, Vitaletti A, Landi G, Memeo V, Laura G, Pucci P (2010) Smart city: an event driven architecture for monitoring public spaces with heterogeneous sensors. In 2010 Fourth International Conference on Sensor Technologies and Applications (SENSORCOMM), IEEE, pp 281–286Google Scholar
  51. Foerster T, Brühl A, Schäffer B (2011) RESTful web processing service. In Proceedings 14th AGILE International Conference on Geographic Information Science, Utrecht, NetherlandsGoogle Scholar
  52. Frew J, Bose R (2001) Earth system science workbench: a data management infrastructure for earth science products. Proc Thirteenth Int Conf Sci Stat Database Manag IEEE 180–189Google Scholar
  53. Gao S, Mioc D, Yi X (2009) The measurement of geospatial Web service quality in SDIs. In: Proceedings 17th International Conference on Geoinformatics, Fairfax, USA pp 1–6Google Scholar
  54. Garijo D, Gil Y (2011) A new approach for publishing workflows: abstractions, standards, and linked data. In Proceedings of the 6th workshop on Workflows in support of large-scale science, ACM, pp 47–56Google Scholar
  55. GeoPW (2013) GeoPW., accessed August 31, 2014
  56. Gil Y, Ratnakar V, Kim J, González-Calero PA, Groth P, Moody J, Deelman E (2011) Wings: intelligent workflow-based design of computational experiments. IEEE Intell Syst 26(1):62–72CrossRefGoogle Scholar
  57. Gil Y, Greaves M, Hendler J, Hirsh H (2014) Amplify scientific discovery with artificial intelligence. Science 346(6206):171–172CrossRefGoogle Scholar
  58. Gong J, Xiang L, Chen J, Yue P, Liu Y (2011) GeoGlobe: a virtual globe for multi-source geospatial information integration and service. Advances in Web-based GIS, Mapping Services and Applications, Taylor & Francis PublicationGoogle Scholar
  59. Goodchild MF, Guo H, Annoni A, Bian L, de Bie K, Campbell F, Woodgate P (2012) Next-generation digital earth. Proc Natl Acad Sci 109(28):11088–11094CrossRefGoogle Scholar
  60. Granell C (2014) Robust workflow systems + flexible geoprocessing services = geo-enabled model Web? In: Pourabbas E (ed) Geographical information systems: trends and technologies. CRC Press, Boca Raton, pp 172–204Google Scholar
  61. Granell C, Fernández ÓB, Díaz L (2014) Geospatial information infrastructures to address spatial needs in health: collaboration, challenges and opportunities. Futur Gener Comput Syst 31:213–222CrossRefGoogle Scholar
  62. Gunay A, Akcay O, Altan MO (2014) Building a semantic based public transportation geoportal compliant with the INSPIRE transport network data theme. Earth Sci Inf 7(1):25–37CrossRefGoogle Scholar
  63. Gyrard A, Bonnet C, Boudaoud K (2014) Enrich machine-to-machine data with semantic web technologies for cross-domain applications. In 2014 I.E. World Forum on Internet of Things (WF-IoT), IEEE 559–564Google Scholar
  64. Han J, Haihong E, Le G, Du J (2011) Survey on NoSQL databases. In 6th international conference on Pervasive computing and applications (ICPCA), IEEE 363–366Google Scholar
  65. Hatzi O, Vrakas D, Nikolaidou M, Bassiliades N, Anagnostopoulos D, Vlahavas L (2012) An integrated approach to automated semantic web service composition through planning. IEEE Trans Serv Comput 5(3):319–332CrossRefGoogle Scholar
  66. He L, Yue P, Di L, Zhang M, Hu L (2015a) Adding geospatial data provenance into SDI—a service-oriented approach. IEEE J Sel Top Appl Earth Obs Remote Sens 8(2):926–936CrossRefGoogle Scholar
  67. He L, Yue P, Jiang L, Zhang M (2015b) Fuzzy spatial relation ontology driven detection of complex geospatial features in a web service environment. Earth Sci Inf 8(1):63–76CrossRefGoogle Scholar
  68. Hendler J (2003) Science and the semantic web. Science 299(5606):520–521CrossRefGoogle Scholar
  69. Hey T, Trefethen AE (2005) Cyberinfrastructure for e-science. Science 308(5723):817–821CrossRefGoogle Scholar
  70. Hofer B (2013) Geospatial cyberinfrastructure and geoprocessing Web—a review of commonalities and differences of e-science approaches. ISPRS Int J Geogr Inf 2(3):749–765CrossRefGoogle Scholar
  71. Hopgood AA (2011) Intelligent systems for engineers and scientists. CRC press, Boca RatonGoogle Scholar
  72. INSPIRE (2008) INSPIRE Network Services Architecture 30Google Scholar
  73. Janowicz K, Bröring A, Stasch C, Schade S, Everding T, Llaves A (2013) A restful proxy and data model for linked sensor data. Int J Digital Earth 6(3):233–254CrossRefGoogle Scholar
  74. Jara AJ, Olivieri AC, Bocchi Y, Jung M, Kastner W, Skarmeta AF (2014) Semantic Web of things: an analysis of the application semantics for the IoT moving towards the IoT convergence. Int J Web Grid Serv 10(2):244–272CrossRefGoogle Scholar
  75. Ji C, Li Y, Qiu W, Awada U, Li K (2012) Big data processing in cloud computing environments. In Proceedings of the 2012 12th International Symposium on Pervasive Systems, Algorithms and Networks. IEEE Comput Soc 17–23Google Scholar
  76. Jordan D, Evdemon J (2007) Web services business process execution language. OASIS, version 2.0 Accessed 31 August 2014
  77. Jungmann A, Kleinjohann B (2012) Towards the application of reinforcement learning techniques for quality-based service selection in automated service composition. In 2012 I.E. Ninth International Conference on Services Computing (SCC), IEEE, pp 701–702Google Scholar
  78. Kadner K, Oberle D (2011) Unified service description language XG final report, W3C Incubator Group Report 27 October 2011. Accessed 31 Augest 2013
  79. Karimi HA (Ed.) (2014). Big Data: techniques and technologies in geoinformatics. CRC PressGoogle Scholar
  80. Karpagam GR, Bhuvaneswari A (2011) AI planning-based semantic web service composition. Int J Innov Comput Appl 3(3):126–135CrossRefGoogle Scholar
  81. Katasonov A, Kaykova O, Khriyenko O, Nikitin S, Terziyan VY (2008) Smart semantic middleware for the internet of things. ICINCO-ICSO 8:169–178Google Scholar
  82. Kouicem A, Chibani A, Tari A, Amirat Y, Tari Z (2014) Dynamic services selection approach for the composition of complex services in the web of objects. In 2014 I.E. World Forum on Internet of Things (WF-IoT), IEEE, pp 298–303Google Scholar
  83. Krishnakumar K (2003) Intelligent systems for aerospace engineering - an overview. National Aeronautics and space administration Moffett Field CA Ames Research CenterGoogle Scholar
  84. Kuzu M, Cicekli NK (2012) Dynamic planning approach to automated web service composition. Appl Intell 36(1):1–28CrossRefGoogle Scholar
  85. Lacasta J, Nogueras-Iso J, Béjar R, Muro-Medrano PR, Zarazaga-Soria FJ (2007) A Web ontology service to facilitate interoperability within a spatial data infrastructure: applicability to discovery. Data Knowl Eng 63(3):947–971CrossRefGoogle Scholar
  86. Lacoche J, Duval T, Arnaldi B, et al (2014) A survey of plasticity in 3D user interfaces, 7th Workshop on Software Engineering and Architectures for Realtime Interactive SystemsGoogle Scholar
  87. Laniak GF, Olchin G, Goodall J, Voinov A, Hill M, Glynn P, Whelan G, Geller G, Quinn N, Blind M, Peackham S, Reaney S, Gaber N, Kennedy R, Hughes A (2013) Integrated environmental modeling: a vision and roadmap for the future. Environ Model Software 39:3–23CrossRefGoogle Scholar
  88. Lanter DP (1991) Design of a lineage-based meta-data base for GIS. Cartogr Geogr Inf Syst 18(4):255–261CrossRefGoogle Scholar
  89. Li S, Da XL, Zhao S (2014a) The internet of things: a survey. Inf Syst Front. doi: 10.1007/s10796-014-9492-7 Google Scholar
  90. Li L, Li S, Zhao S (2014b) QoS-aware scheduling of services-oriented internet of things. IEEE Trans Ind Inf 10(2):1497–1505CrossRefGoogle Scholar
  91. Maguire D, Longley P (2005) The emergence of geoportals and their role in spatial data infrastructures. Comput Environ Urban Syst 29(1):3–14CrossRefGoogle Scholar
  92. Manyika J, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh C, Byers A (2011) Big data: The next frontier for innovation, Competition, and Productivity. McKinsey Global InstituteGoogle Scholar
  93. Maué P, Michels H, Roth M (2012) Injecting semantic annotations into (geospatial) web service descriptions. Semant Web J 3(4):385–395Google Scholar
  94. Mazzetti P, Nativi S, Caron J (2009) RESTful implementation of geospatial services for earth and space science applications. Int J Digital Earth 2(S1):40–61CrossRefGoogle Scholar
  95. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(4):115–133CrossRefGoogle Scholar
  96. McFerren G, Van Zyl T, Vahed A (2012) FOSS geospatial libraries in scientific workflow environments: experiences and directions. Appl Geomatics 4(2):85–93CrossRefGoogle Scholar
  97. Michelson BM (2006) Event-driven architecture overview. Patricia Seybold GroupGoogle Scholar
  98. Michener WK, Allard S, Budden A et al (2012) Participatory design of DataONE—enabling cyberinfrastructure for the biological and environmental sciences. Ecol Inf 11:5–15CrossRefGoogle Scholar
  99. Misev D, Baumann P (2014) Extending the SQL array concept to support scientific analytics. Proc. Intl. Conf. on Scientific and Statistical Database Management (SSDBM’2014), June 30 - July 2, 2014, Aalborg, Denmark, paper #10Google Scholar
  100. Moses R (2011) Enabling quality of geospatial Web services. In: Zhao P, Di L (eds.) Geospatial Web services: advances in information interoperability. IGI Global, Hershey, pp 33–63Google Scholar
  101. Müller M, Bernard L, Brauner J (2010) Moving code in spatial data infrastructures–web service based deployment of geoprocessing algorithms. Trans GIS 14(s1):101–118CrossRefGoogle Scholar
  102. Müller M, Bernard L, Kadner D (2013) Moving code–sharing geoprocessing logic on the Web. ISPRS J Photogramm Remote Sens 83:193–203CrossRefGoogle Scholar
  103. Nativi S, Craglia M, Pearlman J (2013a) Earth science infrastructures interoperability: the brokering approach. IEEE J Sel Top Appl Earth Obs Remote Sens 6(3):1118–1129CrossRefGoogle Scholar
  104. Nativi S, Mazzetti P, Geller G (2013b) Environmental model access and interoperability: the GEO model Web initiative. Environ Model Software 39:214–228CrossRefGoogle Scholar
  105. Negnevitsky M (2005) Artificial intelligence: a guide to intelligent systems. Pearson Education, Upper Saddle RiverGoogle Scholar
  106. Neumeyer L, Robbins B, Nair A, Kesari A (2010) S4: Distributed stream computing platform. In 2010 I.E. International Conference on Data Mining Workshops (ICDMW), IEEE, pp 170–177Google Scholar
  107. Ngan LD, Kanagasabai R (2013) Semantic Web service discovery: state-of-the-art and research challenges. Pers Ubiquit Comput 17(8):1741–1752CrossRefGoogle Scholar
  108. NIST (2011) National Institute of Standards and Technology (NIST) Definition of Cloud Computing. Accessed December 5, 2014
  109. NSF (2007) Cyberinfrastructure vision for 21st Century Discovery, National Science Foundation, USA, March, 2007, 64 ppGoogle Scholar
  110. NSF (2014) EarthCube: Past, Present, and Future. Accessed 26 March 2015
  111. O’Reilly T (2005) What is Web 2.0. Accessed 31 August 2014
  112. OGC (2014) Open Geospatial Consortium, Accessed 31 August 2014
  113. OGC (2015) 3D Portrayal Service Candidate Standard, OGC 15–001, Open Geospatial ConsortiumGoogle Scholar
  114. Onchaga R (2004) Modelling for quality of services in distributed geoprocessing. In: Proceedings XXth ISPRS Congress, Istanbul, Turkey, pp 212–217Google Scholar
  115. Page KR, De Roure DC, Martinez K, Sadler JD, Kit OY (2009) Linked sensor data: Restfully serving rdf and gml. Proc Semant Sens Netw 49Google Scholar
  116. Paik I, Chen W, Kumara BT, Tanaka T, Li Z, Yaguchi Y (2014) Linked data-based service publication for service clustering. In Advanced in Computer Science and its Applications. Springer Berlin Heidelberg, pp 1429–1435Google Scholar
  117. Papazoglou MP (2003) Service-oriented computing: concepts, characteristics and directions. In Proceedings of the Fourth International Conference on Web Information Systems Engineering (WISE), IEEE, pp 3–12Google Scholar
  118. Patni H, Sahoo S, Henson C, Sheth A (2010) Provenance aware linked sensor data. In Proceedings of the second workshop on trust and privacy on the social and semantic webGoogle Scholar
  119. Perry M, Herring J (2012) OGC GeoSPARQL - a geographic query language for RDF data. Version 1.0, OGC 11-052r4, Open Geospatial Consortium, IncGoogle Scholar
  120. Pistore M, Barbon F, Bertoli P, Shaparau D, Traverso P (2004) Planning and monitoring web service composition. In artificial intelligence: methodology, systems, and applications. Springer, Berlin, pp 106–115CrossRefGoogle Scholar
  121. Pouchard LC, Branstetter ML, Cook RB, Devarakonda R, Green J, Palanisamy G, Noy NF (2013) A linked science investigation: enhancing climate change data discovery with semantic technologies. Earth Sci Inf 6(3):175–185CrossRefGoogle Scholar
  122. Pratt A, Peters C, Siddeswara G, Lee B, Terhorst A (2010) Exposing the Kepler scientific workflow system as an OGC web processing service. Proceedings of iEMSs (International Environmental Modelling and Software Society)Google Scholar
  123. Royan J, Gioia P, Cavagna R et al (2007) Network-based visualization of 3d landscapes and city models. IEEE Comput Graph Appl 27(6):70–79CrossRefGoogle Scholar
  124. Rudas IJ, Fodor J (2008) Intelligent systems. Int J Comput Commun Control 3(Suppl):132–138Google Scholar
  125. Russell S, Norvig P (1995) Artificial intelligence: a modern approach. Prentice Hall, Upper Saddle RiverGoogle Scholar
  126. Schadt EE, Linderman MD, Sorenson J, Lee L, Nolan GP (2010) Computational solutions to large-scale data management and analysis. Nat Rev Genet 11(9):647–657CrossRefGoogle Scholar
  127. Scharl A, Tochtermann K (2009) The geospatial web: how geobrowsers, social software and the Web 2.0 are shaping the network society. Springer, LondonGoogle Scholar
  128. Sheth A, Henson C, Sahoo SS (2008) Semantic sensor web. IEEE Internet Comput 12(4):78–83CrossRefGoogle Scholar
  129. Simonis I, Dibner P (2007) OpenGIS sensor planning service implementation specification. Implementation specification OGCGoogle Scholar
  130. Slavakis K, Giannakis G, Mateos G (2014) Modeling and optimization for big data analytics: (Statistical) learning tools for our era of data deluge. IEEE Signal Process Mag 31(5):18–31CrossRefGoogle Scholar
  131. ITU Strategy and Policy Unit (SPU) (2005) ITU internet reports 2005: the internet of things. Geneva: International Telecommunication Union (ITU)Google Scholar
  132. Sun Z, Yue P, Di L (2012) GeoPWTManager: a task-oriented web geoprocessing system. Comput Geosci 47:34–45CrossRefGoogle Scholar
  133. Tamayo A, Granell C, Huerta J (2012) Measuring complexity in OGC web services XML schemas: pragmatic use and solutions. Int J Geogr Inf Sci 26(6):1109–1130CrossRefGoogle Scholar
  134. Tao F, Cheng Y, Xu LD, Zhang L, Li BH (2014) CCIoT-CMfg: cloud computing and internet of things based cloud manufacturing service system. IEEE Trans Ind Inf 10(2):1435–1442CrossRefGoogle Scholar
  135. TIANDITU (2014) TIANDITU MapWorld., accessed August 31, 2014
  136. Tilmes C, Fleig AJ (2008) Provenance tracking in an earth science data processing system. In Provenance and Annotation of Data and Processes. Springer Berlin Heidelberg, pp 221–228Google Scholar
  137. Toshniwal A, Taneja S, Shukla A, Ramasamy K, Patel JM, Kulkarni S, Jackson J, Gade K, Fu M, Donham J, Bhagat N, Mittal S, Ryaboy D (2014) Storm@ twitter. In Proceedings of the 2014 ACM SIGMOD international conference on Management of data, ACM, pp 147–156Google Scholar
  138. Vaccari L, Craglia M, Fugazza C, Nativi S, Santoro M (2012) Integrative research: the EuroGEOSS experience. IEEE J Sel Top Appl Earth Obs Remote Sens 5(6):1603–1611CrossRefGoogle Scholar
  139. van Zyl TL, Vahed A, McFerren G, Hohls D (2012) Earth observation scientific workflows in a distributed computing environment. Trans GIS 16(2):233–248CrossRefGoogle Scholar
  140. Viriyasitavat W, Xu L (2014) Compliance checking for requirement-oriented service workflow interoperations. IEEE Trans Ind Inf. doi: 10.1109/TII.2014.2301132 Google Scholar
  141. VoCamp (2015), accessed March 26, 2015
  142. Vokrinek J, Komenda A, Pechoucek M (2011) Abstract architecture for task-oriented multi-agent problem solving. IEEE Trans Syst Man Cybern Part C Appl Rev 41(1):31–40CrossRefGoogle Scholar
  143. W3C (2015), accessed March 26, 2015
  144. Wang H, Zhou X, Zhou X, Liu W, Li W, Bouguettaya A (2010) Adaptive service composition based on reinforcement learning. SOC 6470:92–107Google Scholar
  145. Wang X, Yu J, Baumann P (2011) A Web coverage ontology for geospatial Web applications. Proc. IEEE Intl. Conf. on Semantic Computing (ICSC’2011), Palo Alto, USA, September 18–21, 2011, pp. 216–223Google Scholar
  146. Wang S, Anselin L, Bhaduri B, Crosby C, Goodchild MF, Liu Y, Nyerges TL (2013) CyberGIS software: a synthetic review and integration roadmap. Int J Geogr Inf Sci 27(11):2122–2145CrossRefGoogle Scholar
  147. WfMC (2008) Process definition interface—XML process definition language. Workflow Management Coalition, Cohasset, p 217Google Scholar
  148. White T (2009) Hadoop: the definitive guide: the definitive guide. O’Reilly Media, SebastopolGoogle Scholar
  149. Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques. Morgan Kaufmann, BurlingtonGoogle Scholar
  150. Wright DJ, Wang S (2011) The emergence of spatial cyberinfrastructure. Proc Natl Acad Sci 108(14):5488–5491CrossRefGoogle Scholar
  151. Yang C, Raskin R, Goodchild M, Gahegan M (2010) Geospatial cyberinfrastructure: past, present and future. Comput Environ Urban Syst 34:264–277CrossRefGoogle Scholar
  152. Yang C, Xu Y, Nebert D (2013) Redefining the possibility of digital earth and geosciences with spatial cloud computing. Int J Digital Earth 6(4):297–312CrossRefGoogle Scholar
  153. Yuan J, Yue P, Gong J, Zhang M (2013) A linked data approach for geospatial data provenance. IEEE Trans Geosci Remote Sens 51(11):5105–5112CrossRefGoogle Scholar
  154. Yue P, Di L, Yang W, Yu G, Zhao P (2007) Semantics-based automatic composition of geospatial Web services chains. Comput Geosci 33(5):649–665CrossRefGoogle Scholar
  155. Yue P, Di L, Yang W, Yu G, Zhao P, Gong J (2009) Semantic web services—based process planning for earth science applications. Int J Geogr Inf Sci 23(9):1139–1163CrossRefGoogle Scholar
  156. Yue P, Gong J, Di L, Yuan J, Sun L, Sun Z, Wang Q (2010) GeoPW: laying blocks for the geospatial processing web. Trans GIS 14(6):755–772CrossRefGoogle Scholar
  157. Yue P, Gong J, Di L, He L, Wei Y (2011a) Integrating semantic web technologies and geospatial catalog services for geospatial information discovery and processing in cyberinfrastructure. Geoinformatica 15(2):273–303CrossRefGoogle Scholar
  158. Yue P, Wei Y, Di L, He L, Gong J, Zhang L (2011b) Sharing geospatial provenance in a service-oriented environment. Comput Environ Urban Syst 35(4):333–343CrossRefGoogle Scholar
  159. Yue P, Di L, Wei Y, Han W (2013a) Intelligent services for discovery of complex geospatial features from remote sensing imagery. ISPRS J Photogramm Remote Sens 83:151–164CrossRefGoogle Scholar
  160. Yue P, Zhou H, Gong J, Hu L (2013b) Geoprocessing in cloud computing platforms—a comparative analysis. Int J Digital Earth 6(4):404–425CrossRefGoogle Scholar
  161. Yue P, Jiang L, Hu L (2014a) Google fusion tables for managing soil moisture sensor observations. IEEE J Sel Top Appl Earth Obs Remote Sens 7(11):4414–4421CrossRefGoogle Scholar
  162. Yue P, Tan Z, Zhang M (2014b) GeoQoS: delivering quality of services on the Geoprocessing Web. In: Proceedings of OSGeo’s European Conference on Free and Open Source Software for Geospatial (FOSS4G-Europe 2014), 15–17 July 2014, Bremen, Germany, 11ppGoogle Scholar
  163. Yue P, Zhang M, Tan Z (2015) A geoprocessing workflow system for environmental monitoring and integrated modelling. Environ Model Software 69:128--140Google Scholar
  164. Zhao P, Di L (2010) Geospatial Web services: advances in information interoperability. IGI Global publisher, Hershey, p 552Google Scholar
  165. Zhao P, Foerster T, Yue P (2012a) The geoprocessing web. Comput Geosci 47(10):3–12CrossRefGoogle Scholar
  166. Zhao P, Di L, Han W, Li X (2012b) Building a Web-services based geospatial online analysis system. IEEE J Sel Top Appl Earth Obs Remote Sens 5(6):1780–1792CrossRefGoogle Scholar
  167. Zhou M, Ma Y (2013) QoS-aware computational method for IoT composite service. J China Univ Posts Telecommun 20:35–39CrossRefGoogle Scholar
  168. Zikopoulos P, Eaton C (2011) Understanding big data: analytics for enterprise class hadoop and streaming data. McGraw-Hill Osborne Media, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Peng Yue
    • 1
    Email author
  • Peter Baumann
    • 2
  • Kaylin Bugbee
    • 3
  • Liangcun Jiang
    • 1
  1. 1.State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS)Wuhan UniversityWuhanChina
  2. 2.Jacobs University BremenBremenGermany
  3. 3.University of Alabama in HuntsvilleHuntsvilleUSA

Personalised recommendations