Earth Science Informatics

, Volume 8, Issue 3, pp 663–675 | Cite as

Exploring a graph theory based algorithm for automated identification and characterization of large mesoscale convective systems in satellite datasets

  • Kim Whitehall
  • Chris A. Mattmann
  • Gregory Jenkins
  • Mugizi Rwebangira
  • Belay Demoz
  • Duane Waliser
  • Jinwon Kim
  • Cameron Goodale
  • Andrew Hart
  • Paul Ramirez
  • Michael J. Joyce
  • Maziyar Boustani
  • Paul Zimdars
  • Paul Loikith
  • Huikyo Lee
Methodology Article

Abstract

Mesoscale convective systems are high impact convectively driven weather systems that contribute large amounts to the precipitation daily and monthly totals at various locations globally. As such, an understanding of the lifecycle, characteristics, frequency and seasonality of these convective features is important for several sectors and studies in climate studies, agricultural and hydrological studies, and disaster management. This study explores the applicability of graph theory to creating a fully automated algorithm for identifying mesoscale convective systems and determining their precipitation characteristics from satellite datasets. Our results show that applying graph theory to this problem allows for the identification of features from infrared satellite data and the seamlessly identification in a precipitation rate satellite-based dataset, while innately handling the inherent complexity and non-linearity of mesoscale convective systems.

Keywords

Mesoscale convective systems Mesoscale convective complexes Graph theory Infrared satellite dataset Precipitation satellite-based dataset 

Notes

Acknowledgments

We acknowledge the NASA GES DISC as the data source. The authors wish to thank the NASA Jet Propulsion Laboratory Regional Climate Model Evaluation System (RCMES) and the Apache Open Climate Workbench (Apache OCW) teams for their support. The authors also wish to thank the reviews for their comments that improved the quality of the article.

References

  1. Arnaud Y, Desbois M, Maizi J (1992) Automatic Tracking and Characterization of African Convective Systems on Meteosat Pictures. J Appl Meteorol 31(5):443–453CrossRefGoogle Scholar
  2. Blamey RC, Reason CJC (2012) Mesoscale Convective Complexes over Southern Africa. J Clim 25(2):753–766CrossRefGoogle Scholar
  3. Bouniol D, Delanoë J, Duroure C, Protat A, Giraud V, Penide G (2010) Microphysical characterisation of West African MCS anvils. Q J R Meteorol Soc 136(S1):323–344CrossRefGoogle Scholar
  4. Carvalho LM, Jones CA (2001) Satellite Method to Identify Structural Properties of Mesoscale Convective Systems Based on the Maximum Spatial Correlation Tracking Technique (MASCOTTE). J Appl Meteorol 40(10):1683–1701CrossRefGoogle Scholar
  5. Chaudhuri S, Middey A (2009) Applicability of bipartite graph model for thunderstorms forecast over Kolkata. Advances in Meteorol., pp 1–12Google Scholar
  6. Chaudhuri S, Middey A (2011) Nowcasting thunderstorms with graph spectral distance and entropy estimation. Meteorol Appl 18(2):238–249CrossRefGoogle Scholar
  7. Desbois M, Kayiranga T, Gnamien B, Guessous S, Picon L (1988) Characteristics of Some Elements of the Sahelian Climate and Their Interannual Variations for July 1983, 1984 and 1985 from the Analysis of METEOSAT ISCCP Data. J Clim 1(9):867–904CrossRefGoogle Scholar
  8. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271CrossRefGoogle Scholar
  9. Dixon M, Wiener G (1993) TITAN: Thunderstorm Identification, Tracking Analysis and Nowcasting - A Radar-based Methodology. J Atmos Ocean Technol 10(6):785–797CrossRefGoogle Scholar
  10. Duvel JP (1989) Convection over Tropical Africa and the Atlantic Ocean during Northern Summer Part I. Interannual and Diurnal Variations Mon Wea Rev 117(12):2782–2799CrossRefGoogle Scholar
  11. Fiolleau T, Roca R (2013) An algorithm for the detection and tracking of tropical mesoscale convective systems using infrared images from geostationary satellite. IEEE Trans Geosci Remote Sens 51(7):1–14CrossRefGoogle Scholar
  12. Galvin JF (2010) Two easterly waves in West Africa in summer 2009. Weather 65(8):219–227CrossRefGoogle Scholar
  13. García-Herrera R, Barriopedro D, Hernández E, Paredes D, Correoso JF, Prieto F (2005) The 2001 mesoscale convective systems over Iberia and the Balearic Islands. Meteorog Atmos Phys 90(3–4):225–243CrossRefGoogle Scholar
  14. Goyens C, Lauwaet D, Schröder M, Demuzere M, Van Lipzig NPM (2011) Tracking mesoscale convective systems in the Sahel: relation between cloud parameters and precipitation. Int J Climatol 32(12):1921–1934CrossRefGoogle Scholar
  15. Hagberg AA, Schult DA, Swart PJ (2008). Exploring network structure, dynamics, and function using NetworkX, (Proceedings of the 7th Python in Science Conference (SciPy2008), Gäel Varoquaux, Travis Vaught, and Jarrod Millman (Eds), Pasadena, CA USA, 11–15, Aug 2008Google Scholar
  16. Houze RA, Smull BF, Dodge P (1990) Mesoscale organization of springtime rainstorms in Oklahoma. Mon Weather Rev 118(3):613–654CrossRefGoogle Scholar
  17. Johnson JT, MacKeen PL, Witt A, Mitchell ED, Stumpp GJ, Eilts MD, Thomas KW (1998) The storm cell identification and tracking algorithm: An enhanced WSR-88D algorithm. Weather Forecast 13(2):263–276CrossRefGoogle Scholar
  18. Korf RE (1985) Depth-first iterative-deepening: An optimal admissible tree search. Artif Intell 27(1):97–109CrossRefGoogle Scholar
  19. Laing AG, Evans JL (2011) Introduction to tropical meteorology (2nd ed.). Retrieved from http://www.goes-r.gov/users/comet/tropical/textbook_2nd_edition/index.htm.
  20. Laing A, Fritsch JM (1993) Mesoscale Convective Complexes in Africa. Mon Weather Rev 121(8):2254–2263CrossRefGoogle Scholar
  21. Laing A, Fritsch JM (1997) The global population of mesoscale convective complexes. Q J R Meteorol Soc 123(538):389–405CrossRefGoogle Scholar
  22. Laurent H, D'Amato N, Lebel T (1998) How important is the contribution of the mesoscale convective complexes to the Sahelian rainfall. Phys Chem Earth 23(5):629–633CrossRefGoogle Scholar
  23. Machado LAT, Laurent H (2004) The convective system area expansion over Amazonia and its relationships with convective system life duration and high-level wind divergence. Mon Weather Rev 132(3):714–725CrossRefGoogle Scholar
  24. Machado LAT, Duvel J-P, Desbois M (1993) Diurnal variations and modulation by easterly waves of the size distribution of convective cloud clusters over West Africa and Atlantic Ocean. Mon Weather Rev 121(1):37–49CrossRefGoogle Scholar
  25. Machado LAT, Rossow WB, Guedes RL, Walker AW (1998) Life cycle variations of mesoscale convective systems over the Americas. Mon Weather Rev 126(6):1630–1654CrossRefGoogle Scholar
  26. Maddox RA (1980) Mesoscale convective complexes. Bull Am Meteorol Soc 61(11):1374–1387CrossRefGoogle Scholar
  27. Mapes BE, Houze RA (1993) Cloud clusters and superclusters over the oceanic warm pool. Mon Weather Rev 121(5):1398–1415CrossRefGoogle Scholar
  28. Mathon V, Laurent H (2001) Life cycle of Sahelian mesoscale convective cloud systems. Q J R Meteorol Soc 127(572):377–406CrossRefGoogle Scholar
  29. Mukherjee DP, Acton ST (2002) Cloud Tracking by Scale Space Classification. IEEE Trans Geosci Remote Sens 40(2):405–415CrossRefGoogle Scholar
  30. Oliphant TE (2007) Python for Scientific Computing. Computing in Science & Engineering 9(3):10–20CrossRefGoogle Scholar
  31. Ray PS (1989) ed. Mesoscale Meteorology and Forecasting. American Meteorological Society, Boston.Google Scholar
  32. Schröder M, König M, Schmetz J (2009) Deep convection observed by the Spinning Enhanced Visible and Infrared Imager on board Meteosat 8: Spatial distribution and temporal evolution over Africa in summer and winter 2006. J. of Geophys. Res.: Atmos. Vol. 114, No. D5Google Scholar
  33. Velasco I, Fritsch JM (1987) Mesoscale convective complexes in the Americas. J Geophys Res Atmos 92(D8):9591–9613Google Scholar
  34. Vila DA, Machado LAT, Laurent H, Velasco I (2008) Forecast and Tracking the Evolution of Cloud Clusters (ForTraCC) Using Satellite Infrared Imagery: Methodology and Validation. Weather Forecast 23(2):233–245CrossRefGoogle Scholar
  35. Williams M, Houze RA Jr (1987) Satellite-observed characteristics of winter monsoon cloud clusters. Mon Weather Rev 115(22):505–519CrossRefGoogle Scholar
  36. Woodley WL, Griffith CG, Griffin JS, Stromatt SC (1980) The interference of GATE convective rainfall from SMS-1 imagery. J Appl Meteorol 19(4):338–408CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Kim Whitehall
    • 1
    • 2
  • Chris A. Mattmann
    • 2
    • 3
  • Gregory Jenkins
    • 1
  • Mugizi Rwebangira
    • 1
  • Belay Demoz
    • 1
  • Duane Waliser
    • 2
    • 4
  • Jinwon Kim
    • 4
  • Cameron Goodale
    • 2
  • Andrew Hart
    • 2
  • Paul Ramirez
    • 2
  • Michael J. Joyce
    • 2
  • Maziyar Boustani
    • 2
  • Paul Zimdars
    • 2
  • Paul Loikith
    • 2
  • Huikyo Lee
    • 2
  1. 1.Howard UniversityWashingtonUSA
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  3. 3.University of Southern CaliforniaLos AngelesUSA
  4. 4.UCLA Joint Institute for Regional and Earth System Science EngineeringLos AngelesUSA

Personalised recommendations