Skip to main content
Log in

The radius spectrum of solid grains settling in gaseous giant protoplanets

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Growth of grains having different initial sizes (10−3 cm ≤ r 0 ≤ 1 cm) has been investigated by coagulation processes inside gas giant protoplanets, formed by disk instability, in the mass range 0.3 to 10 Jovian masses. In doing so, we have determined distribution of thermodynamic variables inside the protoplanets and using the results we have determined growth of the grains having assumed initial sizes. Regarding the transference of heat inside the protoplanets, we have considered the possible two cases of interest, namely convection and conduction-radiation. The results of our calculation show that growth of the grains depends on protoplanetary masses and on initial states of the protoplanets and eventually all the grains having assumed different initial sizes acquire almost the same distribution in the central regions of respective protoplanets in the respective cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Birnstiel T, Dullemond CP, Brauer F (2010) Gas and dust evolution in protoplanetary disks. Astron Astrophys 513(A79):1–21

    Google Scholar 

  • Blum J (2006) Dust agglomeration. Adv Phys 55:881–947

    Article  Google Scholar 

  • Blum J, Wurm G (2000) Experiments on sticking, restructuring, and fragmentation of preplanetary dust aggregates. Icarus 143:138–146

    Article  Google Scholar 

  • Blum J, Wurm G (2008) The growth mechanisms of macroscopic bodies in protoplanetary disks. Annu Rev Astron Astrophys 46:21–56

    Article  Google Scholar 

  • Bodenheimer P, Grossman AS, DeCampli WM, Marcy G, Pollack JB (1980) Calculations of the evolution of the giant planets. Icarus 41:293–308

    Article  Google Scholar 

  • Boley AC, Hayfield T, Mayer L, Durisen RH (2010) Clumps in the outer disk by diskinstability: why they are initially gas giants and the legacy of disruption. Icarus 207:509–516

    Article  Google Scholar 

  • Boss AP (1997) Giant planet formation by gravitational instability. Science 276:1836–1839

    Article  Google Scholar 

  • Boss AP (1998a) Formation of extra solar giant planets: core accretion or disk instability? Earth Moon Planets 81:19–26

    Article  Google Scholar 

  • Boss AP (1998b) Evolution of the solar nebula. IV. Giant gaseous protoplanet formation. Astrophys J 503:923–937

    Article  Google Scholar 

  • Boss AP (2002) Evolution of the solar nebula. V. Disk instabilities with varied thermodynamics. Astrophys J 576:462–472

    Article  Google Scholar 

  • Boss AP (2007) Testing disk instability models for giant planet formation. Astrophys J 661:L73–L76

    Article  Google Scholar 

  • Cha S-H, Nayakshin S (2011) A numerical simulation of a “super-Earth” core delivery from 100 AU to 8 AU. MNRAS 415:3319–3334

    Article  Google Scholar 

  • Chokshi A, Tielens AGGM, Hollenbach D (1993) Dust coagulation. Astrophys J 407:806–819

    Article  Google Scholar 

  • Cuzzi JN, Dobrovolskis AR, Champney JM (1993) Particle-gas dynamics in the mid plane of a protoplanetary nebula. Icarus 106:102–134

    Article  Google Scholar 

  • DeCampli WM, Cameron AGW (1979) Structure and evolution of isolated giant gaseous protoplanets. Icarus 38:367–391

    Article  Google Scholar 

  • Dominik C, Tielens AGGM (1995) Resistance to rolling in the adhesive contact of two elastic spheres. PMA 72:783–803

    Article  Google Scholar 

  • Dominik C, Tielens AGGM (1996) Resistance to sliding on atomic scales in the adhesive contact of two elastic spheres. PMA 73:1279–1302

    Article  Google Scholar 

  • Dominik C, Tielens AGGM (1997) Coagulation of dust grains and the structure of dust aggregates in space. Astrophys J 480:647–673

    Article  Google Scholar 

  • Dubrulle B, Morfill G, Sterzik M (1995) The dust subdisk in the protoplanetary nebula. Icarus 114:237–246

    Article  Google Scholar 

  • Dullemond CP, Dominik C (2005) Dust coagulation in protoplanetary disks: a rapid depletion of small grains. Astron Astrophys 434:971–986

    Article  Google Scholar 

  • Helled R, Bodenheimer P (2011) The effects of metallicity and grain growth and settling on the early evolution of gaseous protoplanets. Icarus 211:939–947

    Article  Google Scholar 

  • Helled R, Schubert G (2008) Core formation in giant gaseous protoplanets. Icarus 198:156–162

    Article  Google Scholar 

  • Helled R, Kovetz A, Podolak M (2005) Settling of small grains in an extended protoplanet. Bull Am Astron Soc 37:675

    Google Scholar 

  • Helled R, Podolak M, Kovetz A (2008) Grain sedimentation in a giant gaseous protoplanet. Icarus 195:863–870

    Article  Google Scholar 

  • Hubickyj O, Bodenheimer P, Lissauer JJ (2005) Accretion of the gaseous envelope of Jupiter around a 5-10 Earth-mass core. Icarus 179:415–431

    Article  Google Scholar 

  • Kerridge JF, Vedder JF (1972) Symposium on the origin of the solar system, held 3–7 April, 1972 in Nice, France. Paris: CNRS Éd 1972:282

    Google Scholar 

  • Klahr HH, Henning T (1997) Particle-trapping eddies in protoplanetary accretion disks. Icarus 128:213–229

    Article  Google Scholar 

  • Matsuo T, Fukagawa M, Kotani T, Itoh Y, Tamura M, Nakagawa T, Enya K, SCI team (2011) Direct detection and spectral characterization of outer exoplanets with the SPICA coronagraph instrument (SCI). Adv Space Res 47:1455–1462

  • Mayer L, Quinn T, Wadsley J, Stadel J (2002) Formation of giant planets by fragmentation of protoplanetary disks. Science 298:1756–1759

    Article  Google Scholar 

  • Mayer L, Quinn T, Wadsley J, Stadel J (2004) The evolution of gravitationally unstable protoplanetary disks: fragmentation and possible giant planet formation. Astrophys J 609:1045–1064

    Article  Google Scholar 

  • McCrea WH, Williams IP (1965) Segregation of materials in cosmogony. Proc Roy Soc Lond A 287:143–164

    Article  Google Scholar 

  • Nayakshin S (2010) A new view on planet formation. arXiv: 1012.1780

  • Paul GC, Bhattacharjee SK (2013) Distribution of thermodynamic variables inside extra-solar protoplanets formed via disk instability. Egypt J Remote Sensing Space Sci. doi:10.1016/j.ejrs.2012.11.004

  • Paul GC, Pramanik JN, Bhattacharjee SK (2008) Structure of initial protoplanets. Int J Mod Phys A 23:2801–2808

    Article  Google Scholar 

  • Paul GC, Pramanik JN, Bhattacharjee SK (2012a) Gravitational settling time of solid grains in gaseous protoplanets. Acta Astronaut 76:95–98

    Article  Google Scholar 

  • Paul GC, Datta S, Pramanik JN, Rahman MM (2012b) Dust grain growth and settling in initial gaseous giant protoplanets. Earth Planet Space 64:641–648

    Article  Google Scholar 

  • Pollack JB, Hubickyj O, Bodenheimer P, Lissauer JJ, Podolak M, Greenzweig Y (1996) Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124:62–85

    Article  Google Scholar 

  • Senthilkumar S, Paul GC (2012) Application of new RKAHeM(4,4) technique to analyze the structure of initial extrasolar giant protoplanets. Earth Sci Inform 5:23–31

    Article  Google Scholar 

  • Simons S, Simpson IC, Williams IP (1978) Segregation of the non-volatile compounds in turbulent protoplanets. Moon Planets 19:399–407

    Article  Google Scholar 

  • Weidenschilling SJ (1977) Aerodynamics of solid bodies in the solar nebula. MNRAS 180:57–70

    Google Scholar 

  • Weidenschilling SJ (1980) Dust to planetesimals: settling and coagulation in the solar nebula. Icarus 44:172–189

    Article  Google Scholar 

  • Weidenschilling SJ (1984) Evolution of grains in a turbulent solar nebula. Icarus 60:553–567

    Article  Google Scholar 

  • Weidenschilling SJ (1997) In Lunar and Planetary Institute Conference Abstracts, 28:1517

  • Williams IP, Crampin DJ (1971) Segregation of material with reference to the formation of the terrestrial planets. MNRAS 152:261–275

    Google Scholar 

  • Williams IP, Handbury MJ (1974) Segregation of the heavy elements in the solar system. Astrophys Space Sci 30:215–223

    Article  Google Scholar 

Download references

Acknowledgment

We wish to thank the anonymous referee for the constructive suggestions and helpful comments that have critically improved the present paper. The authors also wish to thank Professor Shishir Kumar Bhattacharjee and Professor Morris Podolak for fruitful discussions and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. Paul.

Additional information

Communicated by: H. A. Babaie

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, G.C., Rahman, M.M., Kumar, D. et al. The radius spectrum of solid grains settling in gaseous giant protoplanets. Earth Sci Inform 6, 137–144 (2013). https://doi.org/10.1007/s12145-013-0117-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-013-0117-3

Keywords

Navigation