Skip to main content
Log in

Parallel processing in visual perception and memory: What goes where and when?

  • Published:
Current Psychology Aims and scope Submit manuscript

Abstract

This article begins with reviews of parallel processing models in the areas of visual perception and memory, pointing out kinds of information purported to be processed in each, and the overlap in the physiological substrates involved. Next, some pertinent literature having to do with the linkage between perception and memory is reviewed (e.g., visual memory for what or where), concluding that there exists a serious lack of research and knowledge of how different perceptual processes may lead to facilitated, distorted or impaired memory in different forms of storage. Some possible scenarios are presented concerning how perceptual information might be interfaced with memorial mechanisms, and some working hypotheses are considered. Finally, a new paradigm is outlined that examines the linkage between local and global perceptual processing and explicit and implicit learning. This paradigm combines the global precedence paradigm of Navon (1977; 1981) and the sequence learning paradigm of Nissen and Bullemer (1987). Convincing arguments indicate that global stimuli are mediated more quickly via one perceptual stream (the M-cell pathway), but can be processed more slowly by another (the P-cell system). Local aspects of the stimuli are exclusively mediated by the P-cell system. The results of two experiments employing iterations of stimulus sequence, in which sequence learning is possible and measurable in terms of reaction time changes over trials are presented. The second experiment indicates that information thought to be mediated by the M-cell pathway results in incidental sequential learning, while other information thought to be mediated by the P-cell pathway does not. Spatial filtering of the visual stimuli reveals that low spatial frequencies are necessary for sequence learning to occur. The issue of whether this learning is implicit or explicit is also discussed. Ideas for future research, exploring this new area of interest, are proposed. Current knowledge of perceptual and memorial deficits in special populations are considered in an attempt to identify new areas of investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Badcock, J. C, Whitworth, F. A., Badcock, D. R., and Lovegrove, W. J. (1990). Low frequency filtering and the processing of local-global stimuli. Perception 19, 617–629.

    Article  PubMed  Google Scholar 

  • Benson, D., and Greenberg, J. (1969). Visual form agnosia. Archives of Neurology 20, 82–89.

    PubMed  Google Scholar 

  • Benton, A., Hannay, H., and Varney, N. (1975). Visual perception of line direction in patients with unilateral brain disease. Neurology 25, 907–910.

    PubMed  Google Scholar 

  • Benton,, A., and Hecaen, H. (1970). Stereoscopic vision in patients with unilateral cerebral disease. Neurology 20, 1084–1088.

    Google Scholar 

  • Berkeley, G. (1733). The Theory of Vision Vindicated and Explained. A. A. Luce and T. E. Jessop, (Eds.), Herrnstein and Boring Excerpt No. 68.

  • Berry, D. C. and Broadbent, D. E. (1984). On the relationship between task performance and associated verbalizable knowledge. The Quarterly Journal of Experimental Psychology 36 A, 209–231.

    Google Scholar 

  • Berry, D. C. and Broadbent, D. E. (1988). Interactive tasks and the implicit-explicit distinction. British Journal of Psychology 79, 251–272.

    Google Scholar 

  • Bjork, E., and Murray, J. (1977). On the nature of input channels in visual processing. Psychological Review 84, 472–484.

    Article  PubMed  Google Scholar 

  • Brannan, J., and Williams, M. (1987). Allocation of visual attention in good and poor readers. Perception and Psychophysics 41, 23–28.

    PubMed  Google Scholar 

  • Breitmeyer, B. (1975). Simple reaction time as a measure of the temporal response properties of transient and sustained channels. Vision Research 15, 1411–1412.

    Article  PubMed  Google Scholar 

  • Breitmeyer, B. (1980). Unmasking visual masking: A look at the “why” behind the veil of the “how.” Psychological Review 87, 52–69.

    Article  PubMed  Google Scholar 

  • Breitmeyer, B. and Julez, B. (1975). The role of on and off transients in determining the psychophysical spatial frequency response. Vision Research 15, 411–415.

    Article  PubMed  Google Scholar 

  • Breitmeyer, B. G., and Ganz, L. (1976) Implications of sustained transient channels for theories of pattern masking, saccadic suppression, and information processing. Psychological Review 83, 1–36.

    Article  PubMed  Google Scholar 

  • Breitmeyer, B.G., May, J.G. and Williams, M.C. (1988) Spatial frequency and contrast effects in bistable stroboscopic motion. Perception and Psychophysics 44, 525–531.

    PubMed  Google Scholar 

  • Breitmeyer, B.G., May, J.G. and Heller, S.S. (1991) Metaconstrast reveals assymmetries at red-green isoluminance. Journal of the Optical Society 8, 1324–1329.

    Article  Google Scholar 

  • Broadbent, D., and Broadbent, M. (1987). From detection to identification: Response to multiple targets in rapid serial visual presentation. Perception and Psychophysics 42, 105–113.

    PubMed  Google Scholar 

  • Broadbent, D. E., FitzGerald, P., and Broadbent, M. G. P. (1986). Implicit and explicit knowledge in the control of complex systems. British Journal of Psychology 77, 33–50.

    Google Scholar 

  • Brooks, D. N., and Baddeley, A. (1976). What can amnesic patients learn? Neuropsychologia 14, 111–122.

    Article  PubMed  Google Scholar 

  • Burr, D. C, Morrone, M. C, and Ross, J. (1994) Selective suppression of the magnocellular visual pathway during saccadic eye movements. Nature 371, 511–513.

    Article  PubMed  Google Scholar 

  • Butters, N., Salmon, D., and Heindel, W. C. (1994). Specificity of the memory deficits associated with basal ganglia dysfunction. Revue Neurologique 150(8–9), 580–587.

    PubMed  Google Scholar 

  • Cannon, A., and Bechtoldt, H. (1969). Dominance of the right cerebral hemisphere for stereopsis. Neuropsychologia 7, 29–39.

    Article  Google Scholar 

  • Cave, C. B., and Squire, L. R. (1992). Intact and long-lasting repetition priming in amnesia. Journal of Experimental Psychology: Learning, Memory and Cognition 18, 509–520.

    Article  Google Scholar 

  • Cermak, L. S., Lewis, R., Butters, N., and Goodglass, H. (1973). Role of verbal mediation in performance of motor tasks by Korsakoff patients. Perception and Motor Skills 37, 259–262.

    Google Scholar 

  • Chun, M., and Cavanaugh, P. (1997). Seeing two as one: Linking apparent motion and repetition blindness. Psychological Science 8, 74–79.

    Article  Google Scholar 

  • Chun, M., and Potter, M. (1995). A two-stage model for multiple target detection in rapid serial visual presentation. Journal of Experimental Psychology: Human Perception and Performance 21, 109–127.

    Article  PubMed  Google Scholar 

  • Cleeremans, A. (1993). Mechanisms of implicit learning, connectionist models of sequence processing. Massachusetts Institute of Technology.

  • Cleland, B. G., Dubin, M. W., and Levick, W. R. (1971). Sustained and transient neurones in the cat's retina and lateral geniculate nucleus. Journal of Physiology 217, 473–496.

    PubMed  Google Scholar 

  • Cohen, N. J. (1984). Preserved learning capacity in amnesia: Evidence for multiple memory systems. In L. R. Squire and N. Butters (Eds.), Neuropsychology of memory (pp. 83–103). New York: Guilford Press.

    Google Scholar 

  • Cohen, A., and Curran, T. (1993). On tasks, knowledge, correlations and dissociations: Comment on Perruchet and Amorim (1992). Journal of Experimental Psychology: Learning, Memory, and Cognition 19, 1431–1437.

    Article  Google Scholar 

  • Cohen, A., Ivry, R. I., and Keele, S. W. (1990). Attention and structure in sequence learning. Journal of Experimental Psychology: Learning, Memory, and Cognition 16(1), 17–30.

    Article  Google Scholar 

  • Cohen, N. J., and Squire, L. R. (1980). Preserved learning and retention of pattern analyzing skill in amnesia: Dissociation of knowing how and knowing that. Science 210, 207–209.

    Article  PubMed  Google Scholar 

  • Cole, M., Schutta, H., and Warrington, E. (1962). Visual disorientation in homonymous half fields. Neurology 12, 257–263.

    PubMed  Google Scholar 

  • Danion, J., Willard-Schroeder, D., Zimmermann, M., Grange, D., Schleinger, J., and Singer, L. (1991). Explicit memory and repetition priming in depression. Archives of General Psychiatry 48, 707–711.

    PubMed  Google Scholar 

  • Danta, G., Hilton, R., and O'Boyle, D. (1978). Hemisphere function and binocular depth perception. Brain 101, 569–590.

    Article  PubMed  Google Scholar 

  • De Haan, E., Bauer, R., and Greve, K. (1990). Behavioural and physiological evidence for covert face recognition in a prosopagnosic patient. Cortex 28, 77–95.

    Google Scholar 

  • Delis, D., Robertson, L, and Efron, R. (1986). Hemispheric specialization of memory for visual hierarchical stimuli. Neuropsychologia 24, 205–214.

    Article  PubMed  Google Scholar 

  • DeMonasterio, F., and Schein, S., (1980). Protan-like spectral sensitivity offoveal Y ganglion cells of the retina of macaque monkeys. Journal of Physiology 299, 385–396.

    Google Scholar 

  • De Yoe, E. A. and Van Essen, D. C. (1988) Concurrent processing streams in monkey visual cortex. Trends in Neuroscience 11, 219–226.

    Article  Google Scholar 

  • Ditunno, P., and Mann, V. (1990). Right hemisphere specialization for mental rotation in normals and brain damaged subjects. Cortex 26, 177–188.

    PubMed  Google Scholar 

  • Dreher, B., Fukada, Y., and Rodieck, R. (1975). Identifications, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates. Journal of Physiology 258, 433–452.

    Google Scholar 

  • Egeth, H., and Santee, J. (1981). Conceptual and perceptual components of interletter inhibition. Journal of Experimental Psychology: Human Perception and Performance 7, 506–517.

    Article  Google Scholar 

  • Enroth-Cugell, C. and Robson, J. G. (1966). The contrast sensitivity of retinal ganglion cells of the cat. Journal of Physiology 187, 517–552.

    PubMed  Google Scholar 

  • Farah, M. (1990). Visual agnosia: Disorders of object recognition and what they tell us about normal vision. Cambridge, MA: MIT Press.

    Google Scholar 

  • Feldman, J., Kerr, B. and Streissguth, A. (1995). Correlational analysis of procedural and declarative learning performance. Intelligence 20, 87–114.

    Article  Google Scholar 

  • Franco, L., and Sperry, R. (1977). Hemisphere lateralization for cognitive processing of geometry. Neuropsychologia 15, 107–114.

    Article  PubMed  Google Scholar 

  • Frensch, P., Buchner, A., and Lin, J. (1994). Implicit learning of unique and ambiguous serial transitions in the presence and absence of a distractor task. Journal of Experimental Psychology: Learning, Memory, and Cognition 20(3), 567–584.

    Article  Google Scholar 

  • Geffen, G., Bradshaw, J., and Wallace, G. (1971). Interhemispheric effects on reaction time to verbal and nonverbal visual stimuli. Journal of Experimental Psychology 87, 415–422.

    Article  PubMed  Google Scholar 

  • Graf, P. and Schacter, D. L. (1985). Implicit and explicit memory for new associations in normal and amnesic subjects. Journal of Experimental Psychology: Learning, Memory, and Cognition 11(3), 501–518.

    Article  PubMed  Google Scholar 

  • Graf, P., Shimamura, A. P., and Squire, L. R. (1985). Priming across modalities and priming across category levels: Extending the domain of preserved function in amnesia. Journal of Experimental Psychology: Learning, Memory, and Cognition 11(2), 386–396.

    Article  PubMed  Google Scholar 

  • Greve, K., and Bauer, R. (1990). Implicit learning of new faces in prosopagnosia: An application of the mere-exposure paradigm. Neuropsychologia 28(10), 1035–1041.

    Article  PubMed  Google Scholar 

  • Harwerth, R. S., and Levi, D. M. (1978). Reaction time as a measure of suprathreshold grating detection. Vision Research 18, 1579–1586.

    Article  PubMed  Google Scholar 

  • Hasher, L., and Zacks, R. (1979). Automatic and effortful processes in memory. Journal of Experimental Psychology: General 108, 356–388.

    Article  Google Scholar 

  • Hess, R., Baker, C, and Zihl, J. (1989). The motion-blind patient: Low-level spatial and temporal filters. Journal of Neuroscience 9, 1628–1640.

    PubMed  Google Scholar 

  • Hochhaus, L., and Johnston, J. (1996). Perceptual repetition blindness effects. Journal of Experimental Psychology: Human Perception and Performance 22, 355–366.

    Article  PubMed  Google Scholar 

  • Holmes, G. (1919). Disturbances of visual orientation. British Journal of Ophthalmology 2, 449–468; 506-518.

    Google Scholar 

  • Hughes, H. C, Layton, W. M. Baird, G. C, and Lester, L. S. (1984). Global precedence in visual pattern recognition. Perception and Psychophysics 35(4), 361–371.

    PubMed  Google Scholar 

  • Jacoby, L. L. and Witherspoon, D. (1982). Remembering without awareness. Canadian Journal of Psychology 36(2), 300–324.

    Google Scholar 

  • Johansson, G. (1979). Memory functions in visual event perception. In Lars-Goran Nilsson (Ed.), Perspectives on Memory Research. Hillsdale, N.J.: Lawrence Erlbaum Associates, Inc.

    Google Scholar 

  • Jones-Gotman, M. (1986). Memory for designs: The hippocampal contribution. Neuropsychologia 24, 193–203.

    Article  PubMed  Google Scholar 

  • Kanwisher, N. (1987). Repetition blindness: Type recognition without token individuation. Cognition 27, 117–143.

    Article  PubMed  Google Scholar 

  • Kanwisher, N. (1991). Repetition blindness and illusory conjunctions: Errors in binding visual types with visual tokens. Journal of Experimental Psychology: Human Perception and Performance 17, 30–47.

    Article  Google Scholar 

  • Kanwisher, N., and Driver, J. (1992). Objects, attributes, and visual attention: Which, what and where. Current Directions in Psychological Science 1, 26–31.

    Article  Google Scholar 

  • Kanwisher, N., Driver, J., and Machado, L. (1995). Spatial repetition blindness is modulated by selective attention to color or shape. Cognitive Psychology 29, 303–337.

    Article  PubMed  Google Scholar 

  • Kaufman, A. S., and Kaufman, N. L. (1990). Kaufman Brief Intelligence Test.American Guidance Service, Inc., Circle Pines, Minnesota.

    Google Scholar 

  • LaGasse, L. L. (1993). Effects of good form and spatial frequency on global precedence. Perception and Psychophysics 53(1), 89–105.

    PubMed  Google Scholar 

  • Lamb, M. R. and Robertson, L. C. (1989). Do response time advantage and interference reflect the order of processing of global-and local-level information? Perception and Psychophysics 46(3), 254–258.

    PubMed  Google Scholar 

  • Lennie, P. (1980). Parallel visual pathways: A review. Vision Research 20, 561–594.

    Article  PubMed  Google Scholar 

  • Lewicki, P., Czyzewska, M., and Hoffman, H. (1987). Unconscious acquisition of complex procedural knowledge. Journal of Experimental Psychology: Learning, Memory, and Cognition 13, 523–550.

    Article  Google Scholar 

  • Lewicki, P., Hill, T., and Bizot, E. (1988). Acquisition of procedural knowledge about a pattern of stimuli that cannot be articulated. Cognitive Psychology 20, 24–37.

    Article  PubMed  Google Scholar 

  • Livingstone, M., and Hubel, D. (1987) Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. Journal of Neuroscience 7, 3461–3468.

    Google Scholar 

  • Livingstone, M., and Hubel, D. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science 240, 740–749.

    Article  PubMed  Google Scholar 

  • Lovegrove, W. J., Lehmkuhle, S., Baro, J. A., and Garzia, R. (1990). The effects of uniform field flicker and blurring on the global precedence effect. Bulletin of the Psychonomc Society 29(4), 289–281.

    Google Scholar 

  • Lu, S., Guido, W., and Sherman S. M. (1992). Effects of membrane voltage on receptive field properties of lateral geniculate neurons in the cat: Contributions of the low-threshold Ca2+ conductance. Journal of Neurophysiology 68, 2185–2198.

    PubMed  Google Scholar 

  • Luo, C, and Caramazza, A. (1996). Temporal and spatial repetition blindness: Effects of presentation mode and repetition lag on the perception of repeated items. Journal of Experimental Psychology: Human Perception and Performance 22, 95–113.

    Article  PubMed  Google Scholar 

  • Maki, W., and Padmanabhan, G. (1994). Transient suppression of processing during rapid serial visual presentation: Acquired distinctiveness of probes modulates the attentional blink. Psychonomic Bulletin and Review 4, 499–504.

    Google Scholar 

  • Malamut, B. L., Saunders, R. C, and Mishkin, M. (1984). Monkeys with combined amygdalo-hippocam-pal lesions succeed in object discrimination learning despite 24-hour intertriai intervals. Behavioral Neuroscience 98, 759–769.

    Article  PubMed  Google Scholar 

  • Marsolek, C. J., Kosslyn, S. M., and Squire, L. R. (1992). Form-specific visual priming in the right cerebral hemisphere. Journal of Experimental Psychology: Learning, Memory, and Cognition 18(3), 492–508.

    Article  PubMed  Google Scholar 

  • Martin, M. (1979). Local and global processing: The role of sparsity. Memory and Cognition 7(6), 476–484.

    Google Scholar 

  • May, J. G., Gutierrez, C, and Harsin, C. A. (1995). The time-course of global precedence and consistency effects. International Journal of Neuroscience 80, 237–245.

    PubMed  Google Scholar 

  • May, J.G., Martin, F., MacCana, F., and Lovegrove, W.J. (1988) The effects of spatial frequency and temporal waveform on three measures of temporal processing. Journal of General Psychology 115, 293–306.

    Article  PubMed  Google Scholar 

  • May, J., Williams, M., and Dunlap, W. (1988). Temporal order judgments in good and poor readers. Neuropsychologica 26(6), 917–924.

    Article  Google Scholar 

  • Meerwaldt, J., and Van Harskamp, F. (1982). Spatial disorientation in right-hemisphere infarction. Journal of Neurology, Neurosurgery and Psychiatry 45, 586–590.

    Google Scholar 

  • Meyer, G., and Maguire, W. (1977). Spatial frequency and the median of short-term visual storage. Science 198, 524–525.

    Article  PubMed  Google Scholar 

  • Mishkin, M. (1978). Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus. Nature 273, 297–298.

    Article  PubMed  Google Scholar 

  • Mishkin, M. and Appenzeller, T. (1987). The anatomy of memory. Scientific American 256(6), 80–89.

    Article  PubMed  Google Scholar 

  • Mishkin, M., Malamut, B., and Bachevalier, J. (1984). Memories and habits: Two neural systems. In Neurobiology of Learning and Memory, G. Lynch, J. McGaugh, and N. Weinberger. (Eds). New York: The Guilford Press.

    Google Scholar 

  • Moscovitch, M. (1982). Multiple dissociations of function in amnesia. In L. S. Cermak, Human memory and amnesia. Hillsdale, NJ.: Lawrence Erlbaum.

    Google Scholar 

  • Mozer, M. (1989). Types and tokens in visual letter recognition. Journal of Experimental Psychology: Human Perception and Performance 15, 287–303.

    Article  PubMed  Google Scholar 

  • Naveh-Benjamin, M. (1987). Coding of spatial location information: An automatic process? Journal of Experimental Psychology: Learning, Memory, and Cognition 13, 595–605.

    Article  PubMed  Google Scholar 

  • Naveh-Benjamin, M. (1988). Recognition memory of spatial location information: Another failure to support automaticity. Memory and Cognition 16, 437–445.

    Google Scholar 

  • Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. Cognitive Psychology 9, 353–383.

    Article  Google Scholar 

  • Navon, D. (1981). The forest revisited: More on global precedence. Psychological Research 43, 1–32.

    Article  Google Scholar 

  • Newsome, W., Britten, K., and Movshon, J. (1989). Neuronal correlates of a perceptual decision. Nature 341, 52–54.

    Article  PubMed  Google Scholar 

  • Nissen, M. J., and Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology 19, 1–32.

    Article  Google Scholar 

  • Ostergaard, A. L., and Jernigan, T. L. (1993). Are word priming and explicit memory mediated by different brain structures? In P. Graf and M. Masson, Implicit Memory: New Directions in Cognition, Development, and Neuropsychology (pp. 327–349). Hillsdale, N. J.: Lawrence Erlbaum, Associates, Inc.

    Google Scholar 

  • Packard, M. G., Hirsh, R., and White, N. M. (1989). Differential effects of fornix and caudate nucleus lesions on two radial maze tasks: Evidence for multiple memory systems. Journal of Neuroscience 9, 1465–1472.

    PubMed  Google Scholar 

  • Perruchet, P., and Amorim, M. (1992). Conscious knowledge and changes in performance in sequence learning: Evidence against dissociation. Journal of Experimental Psychology: Learning, Memory, and Cognition 18, 785–800.

    Article  PubMed  Google Scholar 

  • Perruchet, P., and Gallego, J. (1993). Association between conscious knowledge and performance in normal subjects: Reply to Cohen and Curran (1993) and Willingam, Greeley, and Bardone (1993). Journal of Experimental Psychology: Learning, Memory, and Cognition 19(6), 1438–1444.

    Article  Google Scholar 

  • Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., and Raichle, M. E. (1988). Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331, 585–589.

    Article  PubMed  Google Scholar 

  • Petersen, S. E., Fox, P. T., Snyder, A. Z., and Raichle, M. E. (1990). Activation of extrastriate and frontal cortical areas by visual words and word-like stimuli. Science 249, 1041–1044.

    Article  PubMed  Google Scholar 

  • Peterson, L. R., and Peterson, M. J. (1959). Short-term retention of individual items. Journal of Experimental Psychology 58, 193–198.

    Article  PubMed  Google Scholar 

  • Pigott, S., and Milner, B. (1994). Capacity of visual short-term memory after unilateral frontal or anterior temporal-lobe resection. Neuropsychologia 32, 969–981.

    Article  PubMed  Google Scholar 

  • Ratcliff, G. (1979). Spatial thought, mental rotation and the right cerebral hemisphere. Neuropsychologia 17, 49–54.

    Article  PubMed  Google Scholar 

  • Ratcliff, G., and Davies-Jones, G. (1972). Defective visual localization in focal brain wounds. Brain 95, 49–60.

    Article  PubMed  Google Scholar 

  • Ratcliff, G., and Newcombe, F. (1982). Spatial orientation in mean: Effects of left, right, and bilateral cerebral lesions. Journal of Neurology, Neurosurgery and Psychiatry 36, 448–454.

    Google Scholar 

  • Raymond, J., Shapiro, K., and Arnell, K. (1992). Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology: Human Perception and Performance 18, 849–860.

    Article  PubMed  Google Scholar 

  • Raymond, J., Shapiro, K., and Arnell, K. (1995). Similarity determines the attentional blink. Journal of Experimental Psychology: Human Perception and Performance 21, 653–662.

    Article  PubMed  Google Scholar 

  • Reber, A. (1967). Implicit learning of artificial grammars. Journal of Verbal Learning and Verbal Behavior 5, 855–863.

    Article  Google Scholar 

  • Reber, A., and Allen, R. (1978). Analogy and abstraction strategies in synthetic grammar learning: A functionalist interpretation. Cognition 6, 189–221.

    Article  Google Scholar 

  • Reber, A., Allen, R. and Regan, S. (1985). Syntactical learning and judgment, still unconscious and still abstract: Comment on Dulany, Carlson, and Dewey. Journal of Experimental Psychology: General 114(1), 17–24.

    Article  Google Scholar 

  • Reber, A., Walkenfeld, F., and Hemstadt, R. (1991). Implicit and explicit learning: Individual differences and IQ. Journal of Experimental Psychology: Learning, Memory and Cognition 17, 888–896.

    Article  Google Scholar 

  • Robertson, L., Lamb, M., and Knight, R. (1988). Effects of lesions of temporal-parietal junction on perceptual and attentional processing in humans. Journal of Neuroscience 8, 3757–3769.

    PubMed  Google Scholar 

  • Roediger, H. and McDermott, K. (1992). Depression and implicit memory: A commentary. Journal of Abnormal Psychology 101, 587–591.

    Article  PubMed  Google Scholar 

  • Schacter, D. (1994). Priming and multiple memory systems: Perceptual mechanisms of implicit memory. In D. L. Schacter and E. Tulving, Memory Systems 1994 (pp. 233–268). Cambridge, MA: MIT Press.

    Google Scholar 

  • Schacter, D., and Tulving, E. (1994). What are the memory systems of 1994? In D. L. Schacter and E. Tulving, Memory Systems 1994 (pp. 1–38). Cambridge, MA: MIT Press.

    Google Scholar 

  • Shapiro, K., Driver, J., Ward, R., and Sorensen, R. (1997). Priming from the attentional blink: A failure to extract visual tokens but not visual types. Psychological Science 8, 95–100.

    Article  Google Scholar 

  • Shapiro, K., Raymond, J., and Arnell, K. (1994). Attention to visual pattern information produces the attentional blink in RSVP. Journal of Experimental Psychology: Human Perception and Performance 20, 357–371.

    Article  PubMed  Google Scholar 

  • Shimamura, A. P. (1986). Priming effects in amnesia: Evidence for a dissociable memory function. Quarterly Journal of Experimental Psychology 38A, 619–644.

    Google Scholar 

  • Solman, R. T., and May, J. G. (1990). Spatial localization discrepancies: A visual deficiency in poor reading. The American Journal of Psychology 103, 243–263.

    Article  PubMed  Google Scholar 

  • Sperling, G. (1960). The information available in brief visual presentations. Psychological Monographs 74, 1–29.

    Google Scholar 

  • Squire, L. R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review 99(2), 195–231.

    Article  PubMed  Google Scholar 

  • Squire, L. R. (1994). Declarative and nondeclarative memory: Multiple brain systems supporting learning and memory. In D. L. Schacter and E. Tulving (Eds). Memory Systems 1994. Cambridge, MA: MIT Press.

    Google Scholar 

  • Squire, L. R., Ojemann, J. G., Miezin, F. M., Petersen, S. E., Videen, T. O., and Raichle, M. E. (1992). Activation of the hippocampus in normal humans: A functional anatomical study of memory. Proceedings of the National Academy of Sciences USA 89, 1837–1841.

    Article  Google Scholar 

  • Squire, L. R., and Zola-Morgan, S. (1988). Memory: Brain systems and behavior. Trends in Neurosciences 11, 170–175.

    Article  PubMed  Google Scholar 

  • Squire, L. R., and Zola-Morgan, S.(1991). The medial temporal lobe memory system. Science 253, 1380–1386.

    Article  PubMed  Google Scholar 

  • Tolhurst, D. L. (1973) Separate channels for the analysis of the shape and the movement of a moving visual stimulus. Journal of Physiology 231, 385–402.

    PubMed  Google Scholar 

  • Tolhurst, D. L. (1975). Reaction times in the detection of gratings by human observers: A probabalistic mechanism. Vision Research 15, 1143–1149.

    Article  PubMed  Google Scholar 

  • Tolman, E. (1932). Purposive Behavior in Animals and Men. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Tranel, D., Damasio, A., and Damasio, H. (1988). Intact recognition of facial expression, gender, and age in patients with impaired recognition of face identity. Neurology 38, 690–696.

    PubMed  Google Scholar 

  • Treisman, A., Cavanaugh, P., Fischer, B., Ramachandran, V. S., and von der Heydt, R. (1990). Form perception and attention: Striate cortex and beyond. In L. Spillman and J. S. Werner (Eds.), Visual Perception: The Neurophysiological Foundations. New York: Academic Press.

    Google Scholar 

  • Tulving, E. (1972). Episodic and semantic memory. In E. Tulving and W. Donaldson, Organization of memory (pp. 381–403). New York: Academic Press.

    Google Scholar 

  • Tulving, E., and Schacter, D. L. (1990). Priming and human memory systems. Science 247, 301–306.

    Article  PubMed  Google Scholar 

  • Uchikawa, K., and Sato, M. (1995) Saccadic suppression of the achromatic and chromatic responses measured by increment-threshold spectral sensitivity. Journal of the optical Society of America 12, 661–666.

    PubMed  Google Scholar 

  • Ungerleider, W., and Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. Goodale, and R. J. W. Mansfield (Eds.), The analysis of visual behavior (pp. 549–586). Cambridge, MA: MIT Press.

    Google Scholar 

  • Vaina, L, LeMay, M., Bienfang, D., Choi, A., and Nakayama, K. (1990). Intact “biological motion” and “structure from motion” perception in a patient with impaired motion mechanisms. A case study. Visual Neuroscience 5, 353–369.

    PubMed  Google Scholar 

  • Van Essen, D. (1985). Functional organization of primate visual cortex. In A. A. Peters and E. G. Jones (Eds.), Cerebral Cortex, Vol. 3. (pp. 259–329). New York: Plenum.

    Google Scholar 

  • Weichselgartner, E., and Sperling, G. (1987). Dynamics of automatic and controlled visual attention. Science 238, 778–780.

    Article  PubMed  Google Scholar 

  • Wiesel, T., and Hubel, D. (1966). Laminar and columnar distribution of geniculocortical fibers in the macaque monkey. Journal of Neurophysiology 29, 1115–1156.

    PubMed  Google Scholar 

  • Weisstein, N., Ozog, G,. And Szoc, G. (1975) A comparison and elaboration of two models of metacontrast. Psychological Review 82, 321–328.

    Article  Google Scholar 

  • Willingham, D., Greeley, T., and Bardone, A. (1993). Dissociation in a serial response time task using a recognition measure: Comment on Perruchet and Amorim (1992). Journal of Experimental Psychology; Learning, Memory and Cognition 19(6), 1424–1430.

    Article  Google Scholar 

  • Willingham, D., Nissen, M., and Bullemer, P. (1989). On the development of procedural knowledge. Journal of Experimental Psychology: Learning, Memory and Cognition 15, 1047–1060.

    Article  Google Scholar 

  • Yin, R. (1970). Face recognition by brain-injured patients: A dissociable ability? Neuropsychologia 8, 395–402.

    Article  PubMed  Google Scholar 

  • Zeki, S. (1980). The representation of colours in the cerebral cortex. Nature 284, 412–418.

    Article  PubMed  Google Scholar 

  • Zola-Morgan, S., and Squire, L. R. (1984). Preserved learning in monkeys with medial temporal lesions: Sparing of motor and cognitive skills. Journal of Neuroscience 4, 1072–1085.

    PubMed  Google Scholar 

  • Zola-Morgan, S., and Squire, L. R. (1985). Medial temporal lesions in monkeys impair memory on a variety of tasks sensitive to human amnesia. Behavioral Neuroscience 99, 22–34.

    Article  PubMed  Google Scholar 

  • Zola-Morgan, S., and Squire, L. R. (1990).The primate hippocampal formation: Evidence for a timelimited role in memory storage. Science 250, 288–290.

    Article  PubMed  Google Scholar 

  • Zola-Morgan, S. Squire, L. R., and Amaral, D. G. (1989). Lesions of the amygdala that spare adjacent cortical regions do not impair memory or exacerbate the impairment following lesions of the hippocampal formation. Journal of Neuroscience 9, 1922–1936.

    PubMed  Google Scholar 

  • Zola-Morgan, S., Squire, L. R., and Mishkin, M. (1982). The neuroanatomy of amnesia: Amygdalahippocampus versus temporal stem. Science 218, 1337–1339.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berg, M.L., May, J.G. Parallel processing in visual perception and memory: What goes where and when?. Curr Psychol 16, 247–283 (1997). https://doi.org/10.1007/s12144-997-1002-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12144-997-1002-3

Keywords

Navigation