Skip to main content
Log in

Schizophrenia patients show impaired bottom-up processing and attentional adjustment

  • Published:
Current Psychology Aims and scope Submit manuscript

Abstract

Schizophrenia patients have been reported to have impairments in attention. In this study, we investigated their selective attention and tested whether they have difficulties in segmenting cues from the context. Twenty-one patients with schizophrenia and twenty-one healthy controls performed an arrow Flanker task, in which a potential cue was presented above the middle stimulus in the target display. Both groups had an accuracy of over 97%. In early trials, healthy controls demonstrated flanker interference on incongruent trials (RTIncongruent > RTNeutral) and facilitation on congruent trials (RTCongruent < RTNeutral), which aligns with previous research. They exhibited sustained flanker interference on incongruent trials and a decreased or non-significant effect on congruent trials in later trials. Patients with schizophrenia, on the other hand, did not show any temporal effects or attentional adjustments. Instead, they displayed flanker interference on incongruent trials and an inverse disadvantage effect on congruent trials both early and later in the experiment. Furthermore, compared to healthy controls, patients experienced a more pronounced flanker interference effect. These findings suggest that patients with schizophrenia have impairments in both information selection and attentional adjustment. This study extends prior research by demonstrating that the impairments of attention in schizophrenia extend beyond executive control and manifest in earlier stages of bottom-up processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data are available from the corresponding author upon reasonable request.

Notes

  1. We conducted a corresponding analysis of covariance (ANCOVA) with age as the covariate to control for this potential confound. The results were similar, with a significant interaction between congruency and group, F(2, 78) = 3.22, p = .045, η2 = .08, and significant main effects of congruency and group, F(1, 63) = 7.90, p = .002, η2 = .17, and F(1, 39) = 5.19, p = .028, η2 = .12. The covariate, age, was not significant, F(1, 39) = .41, p = .527, η2 = .01. Therefore, our findings were not due to the influence of age differences between two groups.

  2. The corresponding ANCOVA revealed a significant main effect of group, F(1, 39) = 5.91, p = .02, η2 = .13. There were no significant interaction, F(2, 78) = .05, p = .95, η2 = .01, or main effect of congruency, F(2, 78) = .77, p = .49, η2 = .02. The covariate, age, was not significant as well, F(1, 39) = 1.48, p = .23, η2 = .01.

References

  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC.

  • Barch, D. M., & Ceaser, A. (2012). Cognition in schizophrenia: Core psychological and neural mechanisms. Trends in Cognitive Sciences, 16(1), 27–34.

    Article  PubMed  Google Scholar 

  • Barch, D. M., Carter, C. S., Perlstein, W., Baird, J., Cohen, J. D., & Schooler, N. (1999). Increased Stroop facilitation effects in schizophrenia are not due to increased automatic spreading activation. Schizophrenia Research, 39(1), 51–64.

    Article  PubMed  Google Scholar 

  • Behrmann, M., Geng, J. J., & Shomstein, S. (2004). Parietal cortex and attention. Current Opinion in Neurobiology, 14(2), 212–217.

    Article  PubMed  Google Scholar 

  • Boucart, M., Mobarek, N., Cuervo, C., & Danion, J. M. (1999). What is the nature of increased Stroop interference in schizophrenia? Acta Psychologica, 101(1), 3–25.

    Article  PubMed  Google Scholar 

  • Bowie, C. R., & Harvey, P. D. (2005). Cognition in schizophrenia: Impairments, determinants, and functional importance. Psychiatric Clinics, 28(3), 613–633.

    PubMed  Google Scholar 

  • Bowie, C. R., & Harvey, P. D. (2006). Cognitive deficits and functional outcome in schizophrenia. Neuropsychiatric Disease and Treatment, 2(4), 531–536.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carter, C. S., Robertson, L. C., & Nordahl, T. E. (1992). Abnormal processing of irrelevant information in chronic schizophrenia: Selective enhancement of Stroop facilitation. Psychiatry Research, 41(2), 137–146.

    Article  PubMed  Google Scholar 

  • Chen, E. Y. H., Wong, A. W. S., Chen, R. Y. L., & Au, J. W. Y. (2001). Stroop interference and facilitation effects in first-episode schizophrenic patients. Schizophrenia Research, 48(1), 29–44.

    Article  PubMed  Google Scholar 

  • Chuderski, A., & Smolen, T. (2016). An integrated utility-based model of conflict evaluation and resolution in the Stroop task. Psychological Review, 123(3), 255–290.

    Article  PubMed  Google Scholar 

  • Cohen, J. D., Barch, D. M., Carter, C., & Servan-Schreiber, D. (1999). Context-processing deficits in schizophrenia: Converging evidence from three theoretically motivated cognitive tasks. Journal of Abnormal Psychology, 108(1), 120–133.

    Article  PubMed  Google Scholar 

  • Davelaar, E. J., & Stevens, J. (2009). Sequential dependencies in the Eriksen flanker task: A direct comparison of two competing accounts. Psychonomic Bulletin & Review, 16(1), 121–126.

    Article  Google Scholar 

  • Davranche, K., Hall, B., & McMorris, T. (2009). Effect of acute exercise on cognitive control required during an Eriksen flanker task. Journal of Sport and Exercise Psychology, 31(5), 628–639.

    Article  PubMed  Google Scholar 

  • Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143–149.

    Article  Google Scholar 

  • Eyler Zorrilla, L. T., Heaton, R. K., McAdams, L. A., Zisook, S., Harris, M. J., & Jeste, D. V. (2000). Cross-sectional study of older outpatients with schizophrenia and healthy comparison subjects: No differences in age-related cognitive decline. American Journal of Psychiatry, 157(8), 1324–1326.

    Article  PubMed  Google Scholar 

  • Giraldo-Chica, M., Rogers, B. P., Damon, S. M., Landman, B. A., & Woodward, N. D. (2018). Prefrontal-thalamic anatomical connectivity and executive cognitive function in schizophrenia. Biological Psychiatry, 83(6), 509–517.

    Article  PubMed  Google Scholar 

  • Gold, J. M., Hahn, B., Strauss, G. P., & Waltz, J. A. (2009). Turning it upside down: Areas of preserved cognitive function in schizophrenia. Neuropsychology Review, 19(3), 294–311.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldberg, T. E., Weinberger, D. R., Berman, K. F., Pliskin, N. H., & Podd, M. H. (1987). Further evidence for dementia of the prefrontal type in schizophrenia?: A controlled study of teaching the Wisconsin card sorting test. Archives of General Psychiatry, 44(11), 1008–1014.

    Article  PubMed  Google Scholar 

  • Granholm, E., Link, P., Fish, S., Kraemer, H., & Jeste, D. (2010). Age-related practice effects across longitudinal neuropsychological assessments in older people with schizophrenia. Neuropsychology, 24(5), 616–624.

    Article  PubMed  Google Scholar 

  • Henik, A., & Salo, R. (2004). Schizophrenia and the stroop effect. Behavioral and Cognitive Neuroscience Reviews, 3(1), 42–59.

    Article  PubMed  Google Scholar 

  • Hepp, H. H., Maier, S., Hermle, L., & Spitzer, M. (1996). The Stroop effect in schizophrenic patients. Schizophrenia Research, 22(3), 187–195.

    Article  PubMed  Google Scholar 

  • Hu, K., Bauer, A., Padmala, S., & Pessoa, L. (2012). Threat of bodily harm has opposing effects on cognition. Emotion, 12(1), 28–32.

    Article  PubMed  Google Scholar 

  • Hu, F. K., He, S., Fan, Z., & Lupiáñez, J. (2014). Beyond the inhibition of return of attention: Reduced habituation to threatening faces in schizophrenia. Frontiers in Psychiatry, 5(7), 1–11.

    Google Scholar 

  • Hu, K., Fan, Z., & He, S. (2015a). Uncovering the interaction between empathetic pain and cognition. Psychological Research, 79(6), 1054–1063.

    Article  PubMed  Google Scholar 

  • Hu, K., Lijffijt, M., Beauchaine, T. P., Fan, Z., Shi, H., & He, S. (2015b). Influence of empathetic pain processing on cognition in schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 265(7), 623–631.

    Article  PubMed  Google Scholar 

  • Jennings, J. R., & Wood, C. C. (1976). The e-adjustment procedure for repeated-measures analyses of variance. Psychophysiology, 13, 277–278.

    Article  PubMed  Google Scholar 

  • Kalanthroff, E., & Henik, A. (2013). Individual but not fragile: Individual differences in task control predict Stroop facilitation. Consciousness and Cognition, 22(2), 413–419.

    Article  PubMed  Google Scholar 

  • Kopp, B., Mattler, U., & Rist, F. (1994). Selective attention and response competition in schizophrenic patients. Psychiatry Research, 53(2), 129–139.

    Article  PubMed  Google Scholar 

  • Laere, E., Tee, S. F., & Tang, P. Y. (2018). Assessment of cognition in schizophrenia using trail making test: A meta-analysis. Psychiatry Investigation, 15(10), 945–955.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, J., & Park, S. (2005). Working memory impairments in schizophrenia: A meta-analysis. Journal of Abnormal Psychology, 114(4), 599–611.

    Article  PubMed  Google Scholar 

  • Lewandowski, K. E., Baker, J. T., McCarthy, J. M., Norris, L. A., & Öngür, D. (2018). Reproducibility of cognitive profiles in psychosis using cluster analysis. Journal of the International Neuropsychological Society, 24(4), 382–390.

    Article  PubMed  Google Scholar 

  • Lipszyc, J., & Schachar, R. (2010). Inhibitory control and psychopathology: A meta-analysis of studies using the stop signal task. Journal of the International Neuropsychological Society, 16(6), 1064–1076.

    Article  PubMed  Google Scholar 

  • Loewenstein, D. A., Czaja, S. J., Bowie, C. R., & Harvey, P. D. (2012). Age-associated differences in cognitive performance in older patients with schizophrenia: A comparison with healthy older adults. The American Journal of Geriatric Psychiatry, 20(1), 29–40.

    Article  PubMed  Google Scholar 

  • Luck, S. J., & Gold, J. M. (2008). The construct of attention in schizophrenia. Biological Psychiatry, 64(1), 34–39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Luck, S. J., Hahn, B., Leonard, C. J., & Gold, J. M. (2019). The hyperfocusing hypothesis: A new account of cognitive dysfunction in schizophrenia. Schizophrenia Bulletin, 45(5), 991–1000.

    Article  PubMed  PubMed Central  Google Scholar 

  • MacLeod, C. M., & MacDonald, P. A. (2000). Interdimensional interference in the Stroop effect: Uncovering the cognitive and neural anatomy of attention. Trends in Cognitive Sciences, 4(10), 383–391.

    Article  PubMed  Google Scholar 

  • Mayr, U., Awh, E., & Laurey, P. (2003). Conflict adaptation effects in the absence of executive control. Nature Neuroscience, 6(5), 450–452.

    Article  PubMed  Google Scholar 

  • Minzenberg, M. J., Laird, A. R., Thelen, S., Carter, C. S., & Glahn, D. C. (2009). Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Archives of General Psychiatry, 66(8), 811–822.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mockler, D., Riordan, J., & Sharma, T. (1997). Memory and intellectual deficits do not decline with age in schizophrenia. Schizophrenia Research, 26(1), 1–7.

    Article  PubMed  Google Scholar 

  • O’Donnell, B. F. (2007). Cognitive impairment in schizophrenia: A life span perspective. American Journal of Alzheimer’s Disease & Other Dementias®, 22(5), 398–405.

    Article  Google Scholar 

  • Ro, T., Machado, L., Kanwisher, N., & Rafal, R. D. (2002). Covert orienting to the locations of targets and distractors: Effects on response channel activation in a flanker task. The Quarterly Journal of Experimental Psychology Section A, 55(3), 917–936.

    Article  Google Scholar 

  • Romero-Ferreiro, V., Garcia-Gutierrez, A., Torio, I., Mari-Beffa, P., Rodriguez-Gomez, P., Periañez, J., Moreno, E. M., Romero, C., Alvarez-Mon, M., & Rodriguez-Jimenez, R. (2023). Cognitive versus emotional modulation within a Stroop paradigm in patients with schizophrenia. BJPsych Open, 9(1), e19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schooler, C., Neumann, E., Caplan, L. J., & Roberts, B. R. (1997). A time course analysis of Stroop interference and facilitation: Comparing normal individuals and individuals with schizophrenia. Journal of Experimental Psychology: General, 126(1), 19–36.

    Article  PubMed  Google Scholar 

  • Smid, H. G. O. M., Bruggeman, R., & Martens, S. (2016). Normal cognitive conflict resolution in psychosis patients with and without schizophrenia. Journal of Abnormal Psychology, 125(1), 88–103.

    Article  PubMed  Google Scholar 

  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643–662.

    Article  Google Scholar 

  • Stuss, D. T. (2011). Functions of the frontal lobes: Relation to executive functions. Journal of the International Neuropsychological Society, 17(5), 759–765.

    Article  PubMed  Google Scholar 

  • Thai, M. L., Andreassen, A. K., & Bliksted, V. (2019). A meta-analysis of executive dysfunction in patients with schizophrenia: Different degree of impairment in the ecological subdomains of the Behavioural assessment of the Dysexecutive syndrome. Psychiatry Research, 272, 230–236.

    Article  PubMed  Google Scholar 

  • Uren, J., Cotton, S. M., Killackey, E., Saling, M. M., & Allott, K. (2017). Cognitive clusters in first-episode psychosis: Overlap with healthy controls and relationship to concurrent and prospective symptoms and functioning. Neuropsychology, 31(7), 787–797.

    Article  PubMed  Google Scholar 

  • Van Assche, M., & Giersch, A. (2011). Visual organization processes in schizophrenia. Schizophrenia Bulletin, 37(2), 394–404.

    Article  PubMed  Google Scholar 

  • Verdoux, H., Liraud, F., Bourgeois, M. L., Gonzales, B., Assens, F., Abalan, F., Beaussier, J. P., Gaussares, C., Etchegaray, B., & van Os, J. (1999). The association of neuropsychological deficits to clinical symptoms in first-admission subjects with psychotic disorders. Schizophrenia Research, 37(2), 198–201.

    PubMed  Google Scholar 

  • Westerhausen, R., Kompus, K., & Hugdahl, K. (2011). Impaired cognitive inhibition in schizophrenia: A meta-analysis of the Stroop interference effect. Schizophrenia Research, 133(1–3), 172–181.

    Article  PubMed  Google Scholar 

  • Westerhausen, R., Kompus, K., & Hugdahl, K. (2013). Unaffected control of distractor interference in schizophrenia: A meta-analysis of incompatibility slowing in flanker tasks. Journal of Psychiatric Research, 47(2), 246–251.

    Article  PubMed  Google Scholar 

  • Wright, I. C., Rabe-Hesketh, S., Woodruff, P. W. R., David, A. S., Murray, R. M., & Bullmore, E. T. (2000). Meta-analysis of regional brain volumes in schizophrenia. American Journal of Psychiatry, 157(1), 16–25.

    Article  PubMed  Google Scholar 

  • Wysocki, J. J., & Sweet, J. J. (1985). Identification of brain-damaged, schizophrenic, and normal medical patients using a brief neuropsychological screening battery. International Journal of Clinical Neuropsychology, 7(1), 40–44.

    Google Scholar 

  • Yücel, M., Volker, C., Collie, A., Maruff, P., Danckert, J., Velakoulis, D., & Pantelis, C. (2002). Impairments of response conflict monitoring and resolution in schizophrenia. Psychological Medicine, 32(7), 1251–1260.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the contributions of all participants and two anonymous reviewers for their professional comments. This study was supported by start-up funds from the University of Arkansas, Little Rock to KH; partially by the Open Research Fund of the CAS Key Laboratory of Behavioral Science, Institute of Psychology, Key project of Beijing Education Science Planning (BEAA21046), and National Natural Science Foundation of China (Grants 31571161) to QL; and partially by NIH grants R21AG067024 and R01AG072893 to CL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kesong Hu.

Ethics declarations

Ethical approval 

This study was conducted in accordance with the Declaration of Helsinki and was approved by the ethics Committee of HuiLongGuan Psychiatry Hospital, Beijing.

Informed consent

All participants provided informed consent before participating in the study.

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Qi Li and Hongmin Xu shared first authorship.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Xu, H., Ren, Q. et al. Schizophrenia patients show impaired bottom-up processing and attentional adjustment. Curr Psychol 43, 14324–14334 (2024). https://doi.org/10.1007/s12144-023-05355-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12144-023-05355-w

Keywords

Navigation