Skip to main content
Log in

Different behavioral and learning effects between using boundary and landmark cues during spatial navigation

  • Published:
Current Psychology Aims and scope Submit manuscript

Abstract

Boundary and landmark as visual spatial cues exert different effects in human spatial navigation. However, it is unclear that how different contributions between boundary and landmark are during human spatial navigation, and how their learning processes occur. In this study, we addressed these issues by using boundary-based and landmark-based spatial navigation tasks in a large sample of participants. During the task, participants were instructed to learn an object’s location based on boundary or landmark in the learning phase, and then retrieve the object’s location in the testing phase. Firstly, we found significantly lower distance and angular errors, and smaller variability during the boundary-based task than that in the landmark-based task, which suggested that boundary cue might guide more effectively and stably than landmark cue during spatial navigation. Secondly, our results showed that individual’s distance and angular errors declined less across the time in the boundary-based navigation than that in the landmark-based navigation, suggested that the boundary-based learning effect was weaker than the landmark-based learning effect. Finally, we found that boundary-influenced individuals were more proficient in the boundary-based navigation, while landmark-influenced individuals were more proficient in the landmark-based navigation. Together, these findings indicate that boundary has higher effectiveness for guiding but less enhancement for learning than landmark in spatial navigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander, A. S., Carstensen, L. C., Hinman, J. R., Raudies, F., Chapman, G. W., & Hasselmo, M. E. (2020). Egocentric boundary vector tuning of the retrosplenial cortex. Science Advances, 6(8), eaaz2322

    PubMed  PubMed Central  Google Scholar 

  • Andersson, S. O., Moser, E. I., & Moser, M. B. (2021). Visual stimulus features that elicit activity in object-vector cells. Communications Biology, 4(1), 1–13

    Google Scholar 

  • Bécu, M., Sheynikhovich, D., Tatur, G., Agathos, C. P., Bologna, L. L., Sahel, J. A., & Arleo, A. (2020). Age-related preference for geometric spatial cues during real-world navigation. Nature human behaviour, 4(1), 88–99

    PubMed  Google Scholar 

  • Berens, S. C., Bird, C. M., & Harrison, N. A. (2020). Minocycline differentially modulates human spatial memory systems. Neuropsychopharmacology : Official Publication Of The American College Of Neuropsychopharmacology, 45(13), 2162–2169

    PubMed  Google Scholar 

  • Bicanski, A., & Burgess, N. (2020). Neuronal vector coding in spatial cognition. Nature Reviews Neuroscience, 21(9), 453–470

    PubMed  Google Scholar 

  • Blaisdell, A. P., Schroeder, J. E., & Fast, C. D. (2018). Spatial integration during performance in pigeons. Behavioural processes, 154, 73–80

    PubMed  Google Scholar 

  • Buckley, M. G., Smith, A. D., & Haselgrove, M. (2015). Learned predictiveness training modulates biases towards using boundary or landmark cues during navigation. The Quarterly journal of experimental psychology, 68(6), 1183–1202

    PubMed  Google Scholar 

  • Bullens, J., Nardini, M., Doeller, C. F., Braddick, O., Postma, A., & Burgess, N. (2010). The role of landmarks and boundaries in the development of spatial memory. Developmental science, 13(1), 170–180

    PubMed  Google Scholar 

  • Chamizo, V. D., Manteiga, R. D., Rodrigo, T., & Mackintosh, N. J. (2006). Competition between landmarks in spatial learning: the role of proximity to the goal. Behavioural processes, 71(1), 59–65

    PubMed  Google Scholar 

  • Chen, D., Kunz, L., Wang, W., Zhang, H., Wang, W. X., Schulze-Bonhage, A., Reinacher, P. C., Zhou, W., Liang, S., Axmacher, N., & Wang, L. (2018). Hexadirectional modulation of theta power in human entorhinal cortex during spatial navigation. Current Biology, 28(20), 3310–3315

    PubMed  Google Scholar 

  • Cheng, K., Huttenlocher, J., & Newcombe, N. S. (2013). 25 years of research on the use of geometry in spatial reorientation: a current theoretical perspective. Psychonomic bulletin & review, 20(6), 1033–1054

    Google Scholar 

  • Cheng, K. (1986). A purely geometric module in the rat’s spatial representation. Cognition, 23(2), 149–178

    PubMed  Google Scholar 

  • Coughlan, G., Puthusseryppady, V., Lowry, E., Gillings, R., Spiers, H., Minihane, A. M., & Hornberger, M. (2020). Test-retest reliability of spatial navigation in adults at-risk of Alzheimer’s disease.PLoS One, 15(9), e0239077

  • Deshmukh, S. S., & Knierim, J. J. (2013). Influence of local objects on hippocampal representations: Landmark vectors and memory. Hippocampus, 23(4), 253–267

    PubMed  Google Scholar 

  • Doeller, C. F., & Burgess, N. (2008). Distinct error-correcting and incidental learning of location relative to landmarks and boundaries. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 5909–5914

    PubMed  PubMed Central  Google Scholar 

  • Doeller, C. F., King, J. A., & Burgess, N. (2008). Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 5915–5920

    PubMed  PubMed Central  Google Scholar 

  • Epstein, R. A., & Vass, L. K. (2014). Neural systems for landmark-based wayfinding in humans. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1635), 20120533

    Google Scholar 

  • Ferrara, K., Landau, B., & Park, S. (2019). Impaired behavioral and neural representation of scenes in Williams syndrome. Cortex; A Journal Devoted To The Study Of The Nervous System And Behavior, 121, 264–276

    PubMed  PubMed Central  Google Scholar 

  • Ferguson, T. D., Livingstone-Lee, S. A., & Skelton, R. W. (2019). Incidental learning of allocentric and egocentric strategies by both men and women in a dual-strategy virtual Morris Water Maze. Behavioural brain research, 364, 281–295

    PubMed  Google Scholar 

  • Gallistel, C. R. (1990). The organization of learning. The MIT Press

  • Geerts, J. P., Chersi, F., Stachenfeld, K. L., & Burgess, N. (2020). A general model of hippocampal and dorsal striatal learning and decision making. Proceedings of the National Academy of Sciences of the United States of America, 117(49), 31427–31437

    PubMed  PubMed Central  Google Scholar 

  • Gianni, E., De Zorzi, L., & Lee, S. A. (2018). The developing role of transparent surfaces in children’s spatial representation. Cognitive Psychology, 105, 39–52

    PubMed  Google Scholar 

  • Glöckner, F., Schuck, N. W., & Li, S. C. (2021). Differential prioritization of intramaze cue and boundary information during spatial navigation across the human lifespan. Scientific Reports, 11(1), 1–16

    Google Scholar 

  • Gofman, X., Tocker, G., Weiss, S., Boccara, C. N., Lu, L., Moser, M. B., Morris, G., & Derdikman, D. (2019). Dissociation between Postrhinal Cortex and Downstream Parahippocampal Regions in the Representation of Egocentric Boundaries. Current Biology, 29(16), 2751–2757e4

    PubMed  Google Scholar 

  • Hägglund, M., Mørreaunet, M., Moser, M. B., & Moser, E. I. (2019). Grid-Cell Distortion along Geometric Borders. Current Biology, 29(6), 1047–1054. e3

    PubMed  Google Scholar 

  • He, Q., & Brown, T. I. (2019). Environmental Barriers Disrupt Grid-like Representations in Humans during Navigation. Current Biology, 29(16), 2718–2722. e3

    PubMed  Google Scholar 

  • Hébert, M., Bulla, J., Vivien, D., & Agin, V. (2017). Are Distal and Proximal Visual Cues Equally Important during Spatial Learning in Mice? A Pilot Study of Overshadowing in the Spatial Domain. Frontiers in behavioral neuroscience, 11, 109

    PubMed  PubMed Central  Google Scholar 

  • Hinman, J. R., Chapman, G. W., & Hasselmo, M. E. (2019). Neuronal representation of environmental boundaries in egocentric coordinates. Nature Communications, 10(1), 2772

    PubMed  PubMed Central  Google Scholar 

  • Honbolygó, F., Babik, A., & Török, Á. (2014, November). Location learning in virtual environments: The effect of saliency of landmarks and boundaries. In 2014 5th IEEE Conference on Cognitive Infocommunications (CogInfoCom) (pp. 595–598). IEEE

  • Julian, J. B., Kamps, F. S., Epstein, R. A., & Dilks, D. D. (2019). Dissociable spatial memory systems revealed by typical and atypical human development.Developmental science, 22(2), e12737

  • Julian, J. B., Ryan, J., Hamilton, R. H., & Epstein, R. A. (2016). The Occipital Place Area Is Causally Involved in Representing Environmental Boundaries during Navigation. Current biology, 26(8), 1104–1109

    PubMed  Google Scholar 

  • Kamps, F. S., Julian, J. B., Kubilius, J., Kanwisher, N., & Dilks, D. D. (2016). The occipital place area represents the local elements of scenes. Neuroimage, 132, 417–424

    PubMed  Google Scholar 

  • Keinath, A. T., Julian, J. B., Epstein, R. A., & Muzzio, I. A. (2017). Environmental Geometry Aligns the Hippocampal Map during Spatial Reorientation. Current Biology, 27(3), 309–317

    PubMed  Google Scholar 

  • Kessels, R. P., Van Doormaal, A., & Janzen, G. (2011). Landmark recognition in Alzheimer’s dementia: spared implicit memory for objects relevant for navigation.PloS One, 6(4), e18611

  • Kosaki, Y., Austen, J. M., & McGregor, A. (2013). Overshadowing of geometry learning by discrete landmarks in the water maze: effects of relative salience and relative validity of competing cues. Journal of experimental psychology: Animal behavior processes, 39(2), 126–139

    PubMed  Google Scholar 

  • Kosaki, Y., Poulter, S. L., Austen, J. M., & McGregor, A. (2015). Dorsolateral striatal lesions impair navigation based on landmark-goal vectors but facilitate spatial learning based on a “cognitive map”. Learning & memory, 22(3), 179–191

    Google Scholar 

  • Krupic, J., Bauza, M., Burton, S., Barry, C., & O’Keefe, J. (2015). Grid cell symmetry is shaped by environmental geometry. Nature, 518(7538), 232–235

    PubMed  PubMed Central  Google Scholar 

  • Kunz, L., Brandt, A., Reinacher, P. C., Staresina, B. P., Reifenstein, E. T., Weidemann, C. T., Herweg, N. A., Patel, A., Tsitsiklis, M., Kempter, R., Kahana, M. J., Schulze-Bonhage, A., & Jacobs, J. (2021). A neural code for egocentric spatial maps in the human medial temporal lobe. Neuron, 109(17), 2781–2796

  • Lee, S. A. (2017). The boundary-based view of spatial cognition: a synthesis. Current Opinion in Behavioral Sciences, 16, 58–65

    Google Scholar 

  • Lee, S. A., Austen, J. M., Sovrano, V. A., Vallortigara, G., McGregor, A., & Lever, C. (2020). Distinct and combined responses to environmental geometry and features in a working-memory reorientation task in rats and chicks. Scientific Reports, 10(1), 7508

    PubMed  PubMed Central  Google Scholar 

  • Lee, S. A., Ferrari, A., Vallortigara, G., & Sovrano, V. A. (2015). Boundary primacy in spatial mapping: Evidence from zebrafish (Danio rerio). Behavioural processes, 119, 116–122

    PubMed  Google Scholar 

  • Lee, S. A., Shusterman, A., & Spelke, E. S. (2006). Reorientation and landmark-guided search by young children: evidence for two systems. Psychological science, 17(7), 577–582

    PubMed  Google Scholar 

  • Lee, S. A., & Spelke, E. S. (2010). A modular geometric mechanism for reorientation in children. Cognitive psychology, 61(2), 152–176

    PubMed  PubMed Central  Google Scholar 

  • Mackintosh, N. J. (1976). Overshadowing and stimulus intensity. Animal learning & behavior, 4(2), 186–192

    Google Scholar 

  • Mou, W., & Zhou, R. (2013). Defining a boundary in goal localization: Infinite number of points or extended surfaces. Journal of experimental psychology: Learning memory and cognition, 39(4), 1115–1127

    PubMed  Google Scholar 

  • Negen, J., Sandri, A., Lee, S. A., & Nardini, M. (2020). Boundaries in spatial cognition: Looking like a boundary is more important than being a boundary. Journal of experimental psychology: Learning memory and cognition, 46(6), 1007–1021

    PubMed  Google Scholar 

  • Newcombe, N. S., & Ratliff, K. R. (2007). Explaining the development of spatial reorientation. The emerging spatial mind, 53–76. New York: Oxford University Press

  • Noack, H., Doeller, C. F., & Born, J. (2021). Sleep strengthens integration of spatial memory systems. Learning & Memory, 28(5), 162–170

    Google Scholar 

  • Park, J., & Park, S. (2020). Coding of navigational distance and functional constraint of boundaries in the human scene-selective cortex. Journal of Neuroscience, 40(18), 3621–3630

    PubMed  Google Scholar 

  • Prados, J. (2011). Blocking and overshadowing in human geometry learning. Journal of Experimental Psychology: Animal Behavior Processes, 37(1), 121

    PubMed  Google Scholar 

  • Ratliff, K. R., & Newcombe, N. S. (2008). Reorienting when cues conflict: Evidence for an adaptive-combination view. Psychological science, 19(12), 1301–1307

    PubMed  Google Scholar 

  • Schuck, N. W., Doeller, C. F., Polk, T. A., Lindenberger, U., & Li, S. C. (2015). Human aging alters the neural computation and representation of space. Neuroimage, 117, 141–150

    PubMed  Google Scholar 

  • Sheynikhovich, D., & Arleo, A. (2010). A reinforcement learning approach to model interactions between landmarks and geometric cues during spatial learning. Brain research, 1365, 35–47

    PubMed  Google Scholar 

  • Sotelo, M. I., Alcalá, J. A., Bingman, V. P., & Muzio, R. N. (2020). On the transfer of spatial learning between geometrically different shaped environments in the terrestrial toad, Rhinella arenarum. Animal Cognition, 23(1), 5570

    Google Scholar 

  • Stewart, S., Jeewajee, A., Wills, T. J., Burgess, N., & Lever, C. (2014). Boundary coding in the rat subiculum. Philosophical transactions of the Royal Society of London Series B Biological sciences, 369(1635), 20120514

    PubMed  PubMed Central  Google Scholar 

  • Sun, L., Frank, S. M., Epstein, R. A., & Peter, U. T. (2021). The parahippocampal place area and hippocampus encode the spatial significance of landmark objects. Neuroimage, 236, 118081

    PubMed  Google Scholar 

  • Twyman, A., Friedman, A., & Spetch, M. L. (2007). Penetrating the geometric module: catalyzing children’s use of landmarks. Developmental psychology, 43(6), 1523–1530

    PubMed  Google Scholar 

  • van Wijngaarden, J. B., Babl, S. S., & Ito, H. T. (2020). Entorhinal-retrosplenial circuits for allocentric-egocentric transformation of boundary coding.eLife, 9, e59816

  • Vieites, V., Pruden, S. M., & Reeb-Sutherland, B. C. (2020). Childhood wayfinding experience explains sex and individual differences in adult wayfinding strategy and anxiety. Cognitive research: principles and implications, 5(1), 12

    PubMed  Google Scholar 

  • Weisberg, S. M., & Newcombe, N. S. (2016). How do (some) people make a cognitive map? Routes, places, and working memory. Journal of Experimental Psychology: Learning Memory and Cognition, 42(5), 768

    PubMed  Google Scholar 

  • Wilson, P. N., & Alexander, T. (2008). Blocking of spatial learning between enclosure geometry and a local landmark. Journal of Experimental Psychology: Learning Memory and Cognition, 34(6), 1369–1376

    PubMed  Google Scholar 

  • Wilson, P. N., & Alexander, T. (2010). Enclosure shape influences cue competition effects and goal location learning. The Quarterly Journal of Experimental Psychology, 63(8), 1552–1567

    PubMed  Google Scholar 

  • Zhou, R., & Mou, W. (2019a). Boundary shapes guide selection of reference points in goal localization. Attention Perception & Psychophysics, 81(7), 2482–2498

    Google Scholar 

  • Zhou, R., & Mou, W. (2019b). The effects of cue placement on the relative dominance of boundaries and landmark arrays in goal localization. The Quarterly Journal of Experimental Psychology, 72(11), 2614–2631

    PubMed  Google Scholar 

  • Zhou, R., & Mou, W. (2016). Superior cognitive mapping through single landmark-related learning than through boundary-related learning. Journal of experimental psychology: Learning Memory and Cognition, 42(8), 1316–1323

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (31872786, 31861143039), the Natural Science Foundation of Hubei Province of China (2020CFB363), the MOE (Ministry of Education in China) Project of Humanities and Social Sciences(21YJC190005), the Open Research Fund of the Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU) (2019A01), and the Fundamental Research Funds for the Central Universities (2021XZZX006, CCNU22QN020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Hao.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, X., Yuan, Z., Lin, S. et al. Different behavioral and learning effects between using boundary and landmark cues during spatial navigation. Curr Psychol 42, 23301–23312 (2023). https://doi.org/10.1007/s12144-022-03335-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12144-022-03335-0

Keywords

Navigation