Emotion regulation in relation to smartphone use: Process smartphone use mediates the association between expressive suppression and problematic smartphone use

Abstract

Previous research has shown that problematic smartphone use (PSU) is related to several affect-related psychopathology variables. Emotion dysregulation has been regarded as a central psychological factor associated with that type of psychopathology. In this paper, the association between expressive emotional suppression, a form of emotion dysregulation, with PSU was investigated. Furthermore, we tested if types of smartphone use (process and social use) mediated that association. Three hundred American college students participated in a web-based survey that included the Smartphone Addiction Scale (for problematic smartphone use), Emotion Regulation Questionnaire (assessing suppression), and Process vs. Social Smartphone Usage scale. We found that expressive suppression was correlated with both process smartphone use and PSU severity. Mediation analysis showed that process smartphone use completely mediated relations between suppression and PSU severity. The findings suggest that dysfunctional emotion regulation could lead to more process smartphone use that, in turn, may manifest in PSU severity. Contributions and limitations of the study are discussed.

This is a preview of subscription content, log in to check access.

Fig. 1

Notes

  1. 1.

    Due to the relatively high correlation between PSU and process smartphone use, we ran an exploratory factor analysis (EFA; using WLSMV estimator and oblique rotation) including the items of SAS and process smartphone use subscale. The results showed that, in general, process use scale loaded to one factor and SAS items loaded to other factors yielded in EFA. All but two items had a standardized factor loading of .35 or higher in process use scale; however, only one of these low-loading items fit to another factor better (factor loading of .36). Furthermore, only two items of SAS loaded to the factor strongly associated with process use (factor loadings .39 and .36); however, these items had higher loadings on other factors (.67 and .62, respectively). Therefore, although PSU and process use are highly correlated, these could still be considered as two separate scales.

References

  1. Aldao, A., Nolen-Hoeksema, S., & Schweizer, S. (2010). Emotion-regulation strategies across psychopathology: A meta-analytic review. Clinical Psychology Review, 30(2), 217–237. https://doi.org/10.1016/j.cpr.2009.11.004.

    Article  PubMed  Google Scholar 

  2. Bian, M., & Leung, L. (2014). Linking loneliness, shyness, smartphone addiction symptoms, and patterns of smartphone use to social capital. Social Science Computer Review, 33(1), 61–79. https://doi.org/10.1177/0894439314528779.

    Article  Google Scholar 

  3. Billieux, J. (2012). Problematic use of the Mobile phone: A literature review and a pathways model. Current Psychiatry Reviews, 8(4), 299–307. https://doi.org/10.2174/157340012803520522.

    Article  Google Scholar 

  4. Billieux, J., Maurage, P., Lopez-Fernandez, O., Kuss, D. J., & Griffiths, M. D. (2015). Can disordered mobile phone use be considered a behavioral addiction? An update on current evidence and a comprehensive model for future research. Current Addiction Reports, 2(2), 156–162.

    Article  Google Scholar 

  5. Brand, M., Young, K. S., & Laier, C. (2014). Prefrontal control and internet addiction: A theoretical model and review of neuropsychological and neuroimaging findings. Frontiers in Human Neuroscience, 8, 375. https://doi.org/10.3389/fnhum.2014.00375.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brand, M., Young, K. S., Laier, C., Wölfling, K., & Potenza, M. N. (2016). Integrating psychological and neurobiological considerations regarding the development and maintenance of specific internet-use disorders: An interaction of person-affect-cognition-execution (I-PACE) model. Neuroscience and Biobehavioral Reviews, 71, 252–266. https://doi.org/10.1016/j.neubiorev.2016.08.033.

    Article  PubMed  Google Scholar 

  7. Butler, E. A., Egloff, B., Wlhelm, F. H., Smith, N. C., Erickson, E. A., & Gross, J. J. (2003). The social consequences of expressive suppression. Emotion, 3(1), 48–67. https://doi.org/10.1037/1528-3542.3.1.48.

    Article  Google Scholar 

  8. Cole, P. M., Michel, M. K., & Teti, L. O. D. (1994). The development of emotion regulation and dysregulation: A clinical perspective. Monographs of the Society for Research in Child Development, 59(2/3), 73. https://doi.org/10.2307/1166139.

    Article  PubMed  Google Scholar 

  9. Cole, P. M., Martin, S. E., & Dennis, T. A. (2004). Emotion regulation as a scientific construct: Methodological challenges and directions for child development research. Child Development, 75(2), 317–333. https://doi.org/10.1111/j.1467-8624.2004.00673.x.

    Article  PubMed  Google Scholar 

  10. Cutuli, D. (2014). Cognitive reappraisal and expressive suppression strategies role in the emotion regulation: An overview on their modulatory effects and neural correlates. Frontiers in Systems Neuroscience, 8, 175. https://doi.org/10.3389/fnsys.2014.00175.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Davis, R. (2001). A cognitive-behavioral model of pathological internet use. Computers in Human Behavior, 17, 187–195.

    Article  Google Scholar 

  12. De Silva, M. J., McKenzie, K., Harpham, T., & Huttly, S. R. (2005). Social capital and mental illness: A systematic review. Journal of Epidemiology and Community Health, 59(8), 619–627. https://doi.org/10.1136/jech.2004.029678.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Demirci, K., Orhan, H., Demirdas, A., Akpinar, A., & Sert, H. (2014). Validity and reliability of the Turkish version of the smartphone addiction scale in a younger population. Klinik Psikofarmakoloji Bulteni-Bulletin of Clinical Psychopharmacology, 24(3), 226–234. https://doi.org/10.5455/bcp.20140710040824.

    Article  Google Scholar 

  14. Demirci, K., Akgonul, M., & Akpinar, A. (2015). Relationship of smartphone use severity with sleep quality, depression, and anxiety in university students. Journal of Behavioral Addictions, 4(2), 85–92. https://doi.org/10.1556/2006.4.2015.010.

    Article  PubMed  PubMed Central  Google Scholar 

  15. DiStefano, C., & Morgan, G. B. (2014). A comparison of diagonal weighted least squares robust estimation techniques for ordinal data. Structural Equation Modeling: A Multidisciplinary Journal, 21(3), 425–438. https://doi.org/10.1080/10705511.2014.915373.

    Article  Google Scholar 

  16. Duke, É., & Montag, C. (2017). Smartphone addiction, daily interruptions and self-reported productivity. Addictive Behaviors Reports, 6, 90–95. https://doi.org/10.1016/j.abrep.2017.07.002.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ehring, T., Tuschen-Caffier, B., Schnulle, J., Fischer, S., & Gross, J. J. (2010). Emotion regulation and vulnerability to depression: Spontaneous versus instructed use of emotion suppression and reappraisal. Emotion, 10(4), 563–572. https://doi.org/10.1037/a0019010.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Elhai, J. D., Levine, J. C., Dvorak, R. D., & Hall, B. J. (2016). Fear of missing out, need for touch, anxiety and depression are related to problematic smartphone use. Computers in Human Behavior, 63, 509–516. https://doi.org/10.1016/j.chb.2016.05.079.

    Article  Google Scholar 

  19. Elhai, J. D., Dvorak, R. D., Levine, J. C., & Hall, B. J. (2017a). Problematic smartphone use: A conceptual overview and systematic review of relations with anxiety and depression psychopathology. Journal of Affective Disorders, 207, 251–259. https://doi.org/10.1016/j.jad.2016.08.030.

    Article  Google Scholar 

  20. Elhai, J. D., Hall, B. J., Levine, J. C., & Dvorak, R. D. (2017b). Types of smartphone usage and relations with problematic smartphone behaviors: The role of content consumption vs. social smartphone use. Cyberpsychology: Journal of Psychosocial Research on Cyberspace, 11(2). https://doi.org/10.5817/cp2017-2-3.

  21. Elhai, J. D., Levine, J. C., Dvorak, R. D., & Hall, B. J. (2017c). Non-social features of smartphone use are most related to depression, anxiety and problematic smartphone use. Computers in Human Behavior, 69, 75–82. https://doi.org/10.1016/j.chb.2016.12.023.

    Article  Google Scholar 

  22. Elhai, J. D., Levine, J. C., Alghraibeh, A. M., Alafnan, A. A., Aldraiweesh, A. A., & Hall, B. J. (2018a). Fear of missing out: Testing relationships with negative affectivity, online social engagement, and problematic smartphone use. Computers in Human Behavior, 89, 289–298. https://doi.org/10.1016/j.chb.2018.08.020.

    Article  Google Scholar 

  23. Elhai, J. D., Tiamiyu, M. F., Weeks, J. W., Levine, J. C., Picard, K. J., & Hall, B. J. (2018b). Depression and emotion regulation predict objective smartphone use measured over one week. Personality and Individual Differences, 133, 21–28. https://doi.org/10.1016/j.paid.2017.04.051.

    Article  Google Scholar 

  24. Elhai, J. D., Rozgonjuk, D., Yildirim, C., Alghraibeh, A. M., & Alafnan, A. A. (2019). Worry and anger are associated with latent classes of problematic smartphone use severity among college students. Journal of Affective Disorders, 246, 209–216. https://doi.org/10.1016/j.jad.2018.12.047.

    Article  PubMed  Google Scholar 

  25. Enez Darcin, A., Kose, S., Noyan, C. O., Nurmedov, S., Yılmaz, O., & Dilbaz, N. (2016). Smartphone addiction and its relationship with social anxiety and loneliness. Behaviour & Information Technology, 35(7), 520–525. https://doi.org/10.1080/0144929x.2016.1158319.

    Article  Google Scholar 

  26. Fucito, L. M., Juliano, L. M., & Toll, B. A. (2010). Cognitive reappraisal and expressive suppression emotion regulation strategies in cigarette smokers. Nicotine & Tobacco Research, 12(11), 1156–1161. https://doi.org/10.1093/ntr/ntq146.

    Article  Google Scholar 

  27. Gao, Y., Li, A., Zhu, T., Liu, X., & Liu, X. (2016). How smartphone usage correlates with social anxiety and loneliness. PeerJ, 4, e2197. https://doi.org/10.7717/peerj.2197.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gerson, J., Plagnol, A. C., & Corr, P. J. (2017). Passive and active Facebook use measure (PAUM): Validation and relationship to the reinforcement sensitivity theory. Personality and Individual Differences, 117, 81–90. https://doi.org/10.1016/j.paid.2017.05.034.

    Article  Google Scholar 

  29. Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of Psychology, 60, 549–576. https://doi.org/10.1146/annurev.psych.58.110405.085530.

    Article  PubMed  Google Scholar 

  30. Gross, J. J. (1998). Antecedent- and response-focused emotion regulation: Divergent consequences for experience, expression, and physiology. Journal of Personality and Social Psychology, 74(1), 224–237. https://doi.org/10.1037/0022-3514.74.1.224.

    Article  PubMed  Google Scholar 

  31. Gross, J. J., & John, O. P. (2003). Individual differences in two emotion regulation processes: Implications for affect, relationships, and well-being. Journal of Personality and Social Psychology, 85(2), 348–362. https://doi.org/10.1037/0022-3514.85.2.348.

    Article  PubMed  Google Scholar 

  32. Heilman, R. M., Crisan, L. G., Houser, D., Miclea, M., & Miu, A. C. (2010). Emotion regulation and decision making under risk and uncertainty. Emotion, 10(2), 257–265. https://doi.org/10.1037/a0018489.

    Article  PubMed  Google Scholar 

  33. Hoffner, C. A., & Lee, S. (2015). Mobile phone use, emotion regulation, and well-being. Cyberpsychology, Behavior and Social Networking, 18(7), 411–416. https://doi.org/10.1089/cyber.2014.0487.

    Article  PubMed  Google Scholar 

  34. Hooper, D., Coughlan, J., & Mullen, M. R. (2008). Structural equation modelling: Guidelines for determining model fit. The Electronic Journal of Business Research Methods, 6(1), 53–60.

    Google Scholar 

  35. Hu, L. t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. https://doi.org/10.1080/10705519909540118.

    Article  Google Scholar 

  36. Huisman, A., Garretsen, H. F. L., & Van Den Eijnden, R. J. J. M. (2000). Problematisch Internetgebruik: een pilot study in Rotterdam (p. 2). IVO reeks. Rotterdam: Netherlands

  37. IBM Corp. (2017). IBM SPSS statistics for Macintosh, version 25.0. Armonk: IBM Corp.

    Google Scholar 

  38. Inal, E. E., Demirci, K., Cetintürk, A., Akgonül, M., & Savas, S. (2015). Effects of smartphone overuse on hand function, pinch strength, and the median nerve. Muscle and Nerve, 52(2), 183–188. https://doi.org/10.1002/mus.24695.

    Article  PubMed  Google Scholar 

  39. John, O. P., & Gross, J. J. (2004). Healthy and unhealthy emotion regulation: Personality processes, individual differences, and life span development. Journal of Personality, 72(6), 1301–1333. https://doi.org/10.1111/j.1467-6494.2004.00298.x.

    Article  PubMed  Google Scholar 

  40. Joormann, J., & Gotlib, I. H. (2010). Emotion regulation in depression: Relation to cognitive inhibition. Cognition & Emotion, 24(2), 281–298. https://doi.org/10.1080/02699930903407948.

    Article  Google Scholar 

  41. Kardefelt-Winther, D. (2014). A conceptual and methodological critique of internet addiction research: Towards a model of compensatory internet use. Computers in Human Behavior, 31, 351–354. https://doi.org/10.1016/j.chb.2013.10.059.

    Article  Google Scholar 

  42. Kardefelt-Winther, D., Heeren, A., Schimmenti, A., van Rooij, A., Maurage, P., Carras, M., et al. (2017). How can we conceptualize behavioural addiction without pathologizing common behaviours? Addiction, 112(10), 1709–1715.

    Article  Google Scholar 

  43. Kline, R. B. (2015). Principles and practice of structural equation modeling. Guilford publications. New York: NY, USA

  44. Kwon, M., Lee, J. Y., Won, W. Y., Park, J. W., Min, J. A., Hahn, C., et al. (2013). Development and validation of a smartphone addiction scale (SAS). PLoS One, 8(2), e56936. https://doi.org/10.1371/journal.pone.0056936.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lachmann, B., Sindermann, C., Sariyska, R. Y., Luo, R., Melchers, M. C., Becker, B., et al. (2018). The role of empathy and life satisfaction in internet and smartphone use disorder. Frontiers in Psychology, 9, 398. https://doi.org/10.3389/fpsyg.2018.00398.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lepp, A., Barkley, J. E., & Karpinski, A. C. (2015). The relationship between cell phone use and academic performance in a sample of U.S. college students. SAGE Open, 5(1), 215824401557316. https://doi.org/10.1177/2158244015573169.

    Article  Google Scholar 

  47. Lowry, P. B., Zhang, J., Wang, C., & Siponen, M. (2016). Why do adults engage in cyberbullying on social media? An integration of online disinhibition and deindividuation effects with the social structure and social learning model. Information Systems Research, 27(4), 962–986. https://doi.org/10.1287/isre.2016.0671.

    Article  Google Scholar 

  48. MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1(2), 130–149. https://doi.org/10.1037/1082-989x.1.2.130.

    Article  Google Scholar 

  49. MacKinnon, D. P. (2008). Introduction to statistical mediation analysis. New York: Routledge Academic.

    Google Scholar 

  50. Mohajerin, B., Dolatshahi, B., Pour Shahbaz, A., & Farhoudian, A. (2013). Differences between expressive suppression and cognitive reappraisal in opioids and stimulant dependent patients. International Journal of High Risk Behaviors & Addiction, 2(1), 8–14. https://doi.org/10.5812/ijhrba.8514.

    Article  Google Scholar 

  51. Montag, C., Sindermann, C., Becker, B., & Panksepp, J. (2016). An affective neuroscience framework for the molecular study of internet addiction. Frontiers in Psychology, 7, 1906. https://doi.org/10.3389/fpsyg.2016.01906.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Muthén, L. K., & Muthén, B. O. (2017). Mplus user’ s guide (8th ed.). Los Angeles: Muthén & Muthén.

    Google Scholar 

  53. Niedenthal, P. M., Ric, F., & Krauth-Gruber, S. (2006). Regulation of emotions. In P. M. Niedenthal, F. Ric, & S. Krauth-Gruber (Eds.), Psychology of emotion: Interpersonal, experiential, and cognitive approaches (pp. 155–194). New York: Psychology Press.

    Google Scholar 

  54. Oulasvirta, A., Rattenbury, T., Ma, L., & Raita, E. (2011). Habits make smartphone use more pervasive. Personal and Ubiquitous Computing, 16(1), 105–114. https://doi.org/10.1007/s00779-011-0412-2.

    Article  Google Scholar 

  55. Panova, T., & Carbonell, X. (2018). Is smartphone addiction really an addiction? Journal of Behavioral Addictions, 7, 1–8. https://doi.org/10.1556/2006.7.2018.49.

    Article  Google Scholar 

  56. Pittman, M., & Reich, B. (2016). Social media and loneliness: Why an Instagram picture may be worth more than a thousand twitter words. Computers in Human Behavior, 62, 155–167. https://doi.org/10.1016/j.chb.2016.03.084.

    Article  Google Scholar 

  57. R Core Team. (2019). R: A language and environment for statistical computing (Version 3.5.3). Vienna: R Core Team.

    Google Scholar 

  58. Rozgonjuk, D., Rosenvald, V., Janno, S., & Täht, K. (2016). Developing a shorter version of the Estonian Smartphone Addiction Proneness Scale (E-SAPS18). Cyberpsychology: Journal of Psychosocial Research on Cyberspace, 10(4). https://doi.org/10.5817/cp2016-4-4.

  59. Rozgonjuk, D., Kattago, M., & Täht, K. (2018a). Social media use in lectures mediates the relationship between procrastination and problematic smartphone use. Computers in Human Behavior, 89, 191–198. https://doi.org/10.1016/j.chb.2018.08.003.

    Article  Google Scholar 

  60. Rozgonjuk, D., Levine, J. C., Hall, B. J., & Elhai, J. D. (2018b). The association between problematic smartphone use, depression and anxiety symptom severity, and objectively measured smartphone use over one week. Computers in Human Behavior, 87, 10–17. https://doi.org/10.1016/j.chb.2018.05.019.

    Article  Google Scholar 

  61. Rozgonjuk, D., Saal, K., & Täht, K. (2018c). Problematic smartphone use, deep and surface approaches to learning, and social media use in lectures. International Journal of Environmental Research and Public Health, 15(1). https://doi.org/10.3390/ijerph15010092.

  62. Rozgonjuk, D., Elhai, J. D., Täht, K., Vassil, K., Levine, J. C., & Asmundson, G. J. G. (2019a). Non-social smartphone use mediates the relationship between intolerance of uncertainty and problematic smartphone use: Evidence from a repeated-measures study. Computers in Human Behavior, 96, 56–62. https://doi.org/10.1016/j.chb.2019.02.013.

    Article  Google Scholar 

  63. Rozgonjuk, D., Ryan, T., Kuljus, J.-K., Täht, K., & Scott, G. G. (2019b). Social comparison orientation mediates the relationship between neuroticism and passive Facebook use. Cyberpsychology: Journal of Psychosocial Research on Cyberspace. 13(1). https://doi.org/10.5817/CP2019-1-2

  64. Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55(1), 68–78. https://doi.org/10.1037/0003-066x.55.1.68.

    Article  Google Scholar 

  65. Samaha, M., & Hawi, N. S. (2016). Relationships among smartphone addiction, stress, academic performance, and satisfaction with life. Computers in Human Behavior, 57, 321–325.

    Article  Google Scholar 

  66. Sheldon, K. M., Ryan, R. M., Rawsthorne, L. J., & Ilardi, B. (1997). Trait self and true self: Cross-role variation in the Big-Five personality traits and its relations with psychological authenticity and subjective well-being. Journal of Personality and Social Psychology, 73(6), 1380–1393. https://doi.org/10.1037/0022-3514.73.6.1380.

    Article  Google Scholar 

  67. Shiota, M. N., & Levenson, R. W. (2009). Effects of aging on experimentally instructed detached reappraisal, positive reappraisal, and emotional behavior suppression. Psychology and Aging, 24(4), 890–900. https://doi.org/10.1037/a0017896.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Song, I., LaRose, R., Eastin, M. S., & Lin, C. A. (2004). Internet gratifications and internet addiction: On the uses and abuses of new media. Cyberpsychology & Behavior, 7(4), 384–394. https://doi.org/10.1089/cpb.2004.7.384.

    Article  Google Scholar 

  69. Tarka, P. (2017). The comparison of estimation methods on the parameter estimates and fit indices in SEM model under 7-point Likert scale. Archives of Data Science, 2(1). https://doi.org/10.5445/KSP/1000058749/10.

  70. Teng, H.-J., Ni, J.-J., & Chen, H.-H. (2018). Relationship between e-servicescape and purchase intention among heavy and light internet users. Internet Research, 28(2), 333–350. https://doi.org/10.1108/IntR-10-2016-0303.

    Article  Google Scholar 

  71. Turel, O., Serenko, A., & Giles, P. (2011). Integrating technology addiction and use: An empirical investigation of online auction users. MIS Quarterly, 35(4), 1043–1061.

    Article  Google Scholar 

  72. van Deursen, A. J. A. M., Bolle, C. L., Hegner, S. M., & Kommers, P. A. M. (2015). Modeling habitual and addictive smartphone behavior. Computers in Human Behavior, 45, 411–420. https://doi.org/10.1016/j.chb.2014.12.039.

    Article  Google Scholar 

  73. Verduyn, P., Lee, D. S., Park, J., Shablack, H., Orvell, A., Bayer, J., et al. (2015). Passive Facebook usage undermines affective well-being: Experimental and longitudinal evidence. Journal of Experimental Psychology: General, 144(2), 480–488. https://doi.org/10.1037/xge0000057.

    Article  Google Scholar 

  74. Verduyn, P., Ybarra, O., Résibois, M., Jonides, J., & Kross, E. (2017). Do social network sites enhance or undermine subjective well-being? A critical review. Social Issues and Policy Review, 11(1), 274–302. https://doi.org/10.1111/sipr.12033.

    Article  Google Scholar 

  75. Wang, J.-L., Wang, H.-Z., Gaskin, J., & Wang, L.-H. (2015). The role of stress and motivation in problematic smartphone use among college students. Computers in Human Behavior, 53, 181–188. https://doi.org/10.1016/j.chb.2015.07.005.

    Article  Google Scholar 

  76. Welborn, B. L., Papademetris, X., Reis, D. L., Rajeevan, N., Bloise, S. M., & Gray, J. R. (2009). Variation in orbitofrontal cortex volume: Relation to sex, emotion regulation and affect. Social Cognitive and Affective Neuroscience, 4(4), 328–339. https://doi.org/10.1093/scan/nsp028.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wilcockson, T. D. W., Ellis, D. A., & Shaw, H. (2018). Determining typical smartphone usage: What data do we need? Cyberpsychology, Behavior and Social Networking, 21(6), 395–398. https://doi.org/10.1089/cyber.2017.0652.

    Article  PubMed  Google Scholar 

  78. Wolniewicz, C. A., Tiamiyu, M. F., Weeks, J. W., & Elhai, J. D. (2018). Problematic smartphone use and relations with negative affect, fear of missing out, and fear of negative and positive evaluation. Psychiatry Research, 262, 618–623. https://doi.org/10.1016/j.psychres.2017.09.058.

    Article  PubMed  Google Scholar 

  79. Xie, Y., Szeto, G. P., Dai, J., & Madeleine, P. (2016). A comparison of muscle activity in using touchscreen smartphone among young people with and without chronic neck-shoulder pain. Ergonomics, 59(1), 61–72. https://doi.org/10.1080/00140139.2015.1056237.

    Article  PubMed  Google Scholar 

  80. Zhitomirsky-Geffet, M., & Blau, M. (2016). Cross-generational analysis of predictive factors of addictive behavior in smartphone usage. Computers in Human Behavior, 64, 682–693. https://doi.org/10.1016/j.chb.2016.07.061.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dmitri Rozgonjuk.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical Approval

The Ethical Approval was provided by the University of Toledo Social Behavioral Institutional Review Board.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rozgonjuk, D., Elhai, J.D. Emotion regulation in relation to smartphone use: Process smartphone use mediates the association between expressive suppression and problematic smartphone use. Curr Psychol (2019). https://doi.org/10.1007/s12144-019-00271-4

Download citation

Keywords

  • Problematic smartphone use
  • Smartphone addiction
  • Smartphone use disorder
  • Emotion regulation
  • Expressive suppression
  • Suppression