Skip to main content

Trends in research related to the Dark Triad: A bibliometric analysis

Abstract

The aim of this study was to investigate trends in research related to the Dark Triad using a bibliometric analysis. Four main clusters were recognized on author keywords: Dark Triad traits (Machiavellianism, narcissism, and psychopathy, along with terms such are life history theory, mating, and morality), measurement (short Dark Triad measures and terms related to psychometrics), personality models (Big Five, Five Factor Model, HEXACO, and terms related to sadism and aggression), and mainly gender differences cluster. The measurement and personality models clusters gathered the latest research, but specifically studies containing terms related to short Dark Triad measures and sadism. Analysis of the indexed keywords revealed a similar organization of the clusters, but with a great prominence of clinical studies and methodological terms. The map of bibliographic coupling showed several relatively separated groups of authors with different focus in cited references, with Jonason, P.K. in the central position. However, a map of co-citation of authors revealed closeness of these separated groups, with Jonason, P.K. and Paulhus, D.L. with nearly equal number of citations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bertl, B., Pietschnig, J., Tran, U. S., Stieger, S., & Voracek, M. (2017). More or less than the sum of its parts? Mapping the dark triad of personality onto a single dark Core. Personality and Individual Differences, 114, 140–144. https://doi.org/10.1016/j.paid.2017.04.002.

    Article  Google Scholar 

  2. Book, A., Visser, B. A., & Volk, A. A. (2015). Unpacking “evil”: Claiming the core of the dark triad. Personality and Individual Differences, 73, 29–38.

    Article  Google Scholar 

  3. Book, A., Visser, B. A., Blais, J., Hosker-Field, A., Methot-Jones, T., Gauthier, N. Y., et al. (2016). Unpacking more “evil”: What is at the core of the dark tetrad? Personality and Individual Differences, 90, 269–272. https://doi.org/10.1016/j.paid.2015.11.009.

    Article  Google Scholar 

  4. Boonroungrut, C., & Oo, T. (2017). Dark triad trends in personality studies: Systematic review with bibliometric network analysis. Journal of Humanity and Social Sciences Masharkham University, 36(6), 63–76.

    Google Scholar 

  5. Buckels, E. E., Trapnell, P. D., & Paulhus, D. L. (2014). Trolls just want to have fun. Personality and Individual Differences, 67, 97–102. https://doi.org/10.1016/j.paid.2014.01.016.

    Article  Google Scholar 

  6. Burnham, J. F. (2006). Scopus database: A review. Biomedical digital libraries, 3(1), 1–8. https://doi.org/10.1186/1742-5581-3-1.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cecchino, N. J. (2010). Google scholar. Journal of the Medical Library Association, 98(4), 320–321. https://doi.org/10.3163/1536-5050.98.4.016.

    Article  PubMed Central  Google Scholar 

  8. Chabrol, H., Van Leeuwen, N., Rodgers, R., & Séjourné, N. (2009). Contributions of psychopathic, narcissistic, Machiavellian, and sadistic personality traits to juvenile delinquency. Personality and Individual Differences, 47, 734–739. https://doi.org/10.1016/j.paid.2009.06.020.

    Article  Google Scholar 

  9. D'Souza, M. F., & Jones, D. N. (2017). Taxonomy of the scientifc network of the dark triad: Revelations in the business and accounting context. Revista de Educação e Pesquisa em Contabilidade (REPeC) [Journal of Education and Research in Accounting], 11(3), 290–306. https://doi.org/10.17524/repec.v11i3.1588.

    Article  Google Scholar 

  10. Furnham, A., Richards, S. C., & Paulhus, D. L. (2013). The dark triad of personality: A 10 year review. Social and Personality Psychology Compass, 7(3), 199–216. https://doi.org/10.1111/spc3.12018.

    Article  Google Scholar 

  11. Harzing, A. W., & Alakangas, S. (2016). Google scholar, Scopus and the web of science: A longitudinal and cross-disciplinary comparison. Scientometrics, 106(2), 787–804. https://doi.org/10.1007/s11192-015-1798-9.

    Article  Google Scholar 

  12. Hodson, G., Hogg, S. M., & MacInnis, C. C. (2009). The role of “dark personalities” (narcissism, machiavellianism, psychopathy), big five personality factors, and ideology in explaining prejudice. Journal of Research in Personality, 43, 686–690. https://doi.org/10.1016/j.jrp.2009.02.005.

    Article  Google Scholar 

  13. Jevremov, T. (2013). Razlike između mapa naučnih disciplina formiranih na osnovu koincidencije deskriptora nastalih kognitivnom obradom informacija i mapa proizvedenih primenom statističkih algoritama [differences between maps of scientific disciplines based on coincidence of descriptors generated by cognitive information processing and maps produced by using statistical algorithms]. Unpublished doctoral dissertation, University of Novi Sad, Serbia.

  14. Jonason, P. K., & Webster, G. D. (2010). The dirty dozen: A concise measure of the dark triad. Psychological Assessment, 22(2), 420–432. https://doi.org/10.1037/a0019265.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jones, D. N., & Figueredo, A. J. (2013). The core of darkness: Uncovering the heart of the dark triad. European Journal of Personality, 27, 521–531. https://doi.org/10.1002/per.1893.

    Article  Google Scholar 

  16. Jones, D. N., & Paulhus, D. L. (2014). Introducing the short dark triad (SD3): A brief measure of dark personality trait. Assessment, 21(1), 28–41. https://doi.org/10.1177/1073191113514105.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Joshi, A. (2016). Comparison between SCOPUS & ISI web of science. Journal Global Values, 7(1), 1–11. Retrieved from http://anubooks.com/wp-content/uploads/2017/08/2016-7-JVG-No.-1-1.pdf. Accessed 15 Jan 2019.

    Google Scholar 

  18. Karakus, M. (2018). Psychological capital research in social sciences: A bibliometric analysis. Electronic International Journal of Education, Arts, and Science (EIJEAS), 4(8), 39–58.

    Google Scholar 

  19. Klavans, R., & Boyack, K. W. (2006). Quantitative evaluation of large maps of science. Scientometrics, 68(3), 475–499. https://doi.org/10.1007/s11192-006-0125-x.

    Article  Google Scholar 

  20. Leydesdorff, L., & Zaal, R. (1988). Co-words and citations: Relations between document sets and environments. In L. Egghe & R. Rousseau (Eds.), Informetrics 87–88 (pp. 105–119). Amsterdam: Elsevier.

    Google Scholar 

  21. Leydesdorff, L., & Rafols, I. (2012). Interactive overlays: A new method for generating global journal maps from web-of-science data. Journal of Informetrics, 6(2), 318–332. Retreived from https://arxiv.org/abs/1301.1013. Accessed 15 Jan 2019.

  22. Marcus, D. K., & Zeigler-Hill, V. (2015). A big tent of dark personality traits. Social and Personality Psychology Compass, 9(8), 434–446. https://doi.org/10.1111/spc3.12185.

    Article  Google Scholar 

  23. Miller, J. D., Gaughan, E. T., Maples, J., & Price, J. (2011). A comparison of agreeableness scores from the big five inventoryand the NEO PI-R: Consequences for the study of narcissismand psychopathy. Assessment, 18, 335–339. https://doi.org/10.1177/1073191111411671.

  24. Miller, J. D., Hyatt, C. S., Maples-Keller, J. L., Carter, N. T., & Lynam, D. R. (2016). Psychopathy and Machiavellianism: A distinction without a difference? Journal of Personality, 85(4), 439–453. https://doi.org/10.1111/jopy.12251.

    Article  PubMed  Google Scholar 

  25. Murphy, L.S., Reinsch, S., Najm, W.I., Dickerson, V.M., Seffinger, M.A., Adams, A., & Mishra, S.I. (2003). Searching biomedical databases on complementary medicine: The use of controlled vocabulary among authors, indexers and investigators. BMC Complementary and Alternative Medicine, 3(3), 1–13. Published online 2003 Jul 7. https://doi.org/10.1186/1472-6882-3-3.

  26. Noack, A. (2009). Modularity clustering is force-directed layout. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 79(2 Pt 2), 026102. https://doi.org/10.1103/PhysRevE.79.026102.

    Article  PubMed  Google Scholar 

  27. Noruzi, A. (2005). Google scholar: The new generation of citation indexes. Libri, 55(4), 170–180. Retrieved from http://hdl.handle.net/10760/7179. Accessed 15 Jan 2019.

    Article  Google Scholar 

  28. O’Meara, A., Davies, J., & Hammond, S. (2011). The psychometric properties and utility of the short sadistic impulse scale (SSIS). Psychological Assessment, 23, 523–531. https://doi.org/10.1037/a0022400.

    Article  PubMed  Google Scholar 

  29. Paulhus, D. L., & Williams, K. M. (2002). The dark triad of personality: Narcissism, Machiavellianism, and psychopathy. Journal of Research in Personality, 36(6), 556–563. https://doi.org/10.1016/S0092-6566(02)00505-6.

    Article  Google Scholar 

  30. Perianes-Rodriguez, A., Waltman, L., & Van Eck, N. J. (2016). Constructing bibliometric networks: A comparison between full and fractional counting. Journal of Informetrics, 10(4), 1178–1195. https://doi.org/10.1016/j.joi.2016.10.006.

    Article  Google Scholar 

  31. Rafferty, P., & Hidderly, R. (2007). Flickr and democratic indexing: Dialog approaches to indexing. Aslib Proceedings: New Information Perspectives, 59(4/5), 397–410.

    Article  Google Scholar 

  32. Rafols, I., Porter, A. L., & Leydesdorff, L. (2010). Science overlay maps: A new tool for research policy and library management. Journal of the American Society for Information Science and Technology, 61(9), 1871–1887.

    Article  Google Scholar 

  33. Sa’ed, H. Z., Sweileh, W. M., Awang, R., & Al-Jabi, S. W. (2018). Global trends in research related to social media in psychology: Mapping and bibliometric analysis. International Journal of Mental Health Systems, 12(4), 4. https://doi.org/10.1186/s13033-018-0182-6.

    Article  Google Scholar 

  34. Sleep, C. E., Lynam, D. R., Hyatt, C. S., & Miller, J. D. (2017). Perils of partialing redux: The case of the dark triad. Journal of Abnormal Psychology, 126, 939–950. https://doi.org/10.1037/abn0000278.

    Article  PubMed  Google Scholar 

  35. Van Eck, N. J., & Waltman, L. (2009). How to normalize cooccurrence data? An analysis of some well-known similarity measures. Journal of the American Society for Information Science and Technology, 60(8), 1635–1651 https://doi.org/10.1002/asi.21075.

    Article  Google Scholar 

  36. Van Eck, N. J., & Waltman, L. (2014). Visualizing bibliometric networks. In Y. Ding, R. Rousseau, & D. Wolfram (Eds.), Measuring scholarly impact: Methods and practice (pp. 285–320). Switzerland: Springer.

    Google Scholar 

  37. Vize, C. E., Lynam, D. R., Collison, K. L., & Miller, J. D. (2016). Differences among dark triad components: A meta–analytic investigation. Personality disorders: Theory, research, and treatment, 9(2), 101–111. https://doi.org/10.1037/per0000222.

    Article  Google Scholar 

  38. Zhao, D., & Strotmann, A. (2014). The knowledge base and research front of information science 2006–2010: An author cocitation and bibliographic coupling analysis. Journal of the Association for Information Science and Technology, 65(5), 995–1006. https://doi.org/10.1002/asi.23027.

    Article  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia [Grant ON179006].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bojana M. Dinić.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical Statement

Authors state that the research meets all ethical requirements, and is adherent to the legal requirements of the Institutional Review Board which are in agreement with the Declaration of Helsinki.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 5029 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dinić, B.M., Jevremov, T. Trends in research related to the Dark Triad: A bibliometric analysis. Curr Psychol 40, 3206–3215 (2021). https://doi.org/10.1007/s12144-019-00250-9

Download citation

Keywords

  • Dark Triad traits
  • Life history strategy, short Dark Triad measures
  • Personality models
  • Gender differences
  • Bibliometric analysis