Liked Music Increases Spatial Rotation Performance Regardless of Tempo

Abstract

Performance on spatial rotation tasks has been shown to improve following listening to music that one likes with the explanation that the fast tempo, and the major mode associated with it, increases arousal and mood. However, given that research also shows that people sometimes like slow-tempo music as much as fast-tempo music it seems remiss that this preference effect has not been explored for slow-tempo music. We extend previous findings by using a more ecologically-valid method and explore whether the tempo effect was independent of the preference for the music, especially when the music is of a slow tempo. Participants listened to both liked and disliked music, in either a fast or slow tempo, prior to completing a series of spatial rotation tasks. In both tempos, liked music was associated with significantly better spatial rotation performance than disliked music. Interestingly, disliked, fast-tempo music was no better than liked, slow-tempo music. Results are discussed with respect to the arousal and mood literature.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Ali, S. O., & Peynircioğlu, Z. F. (2010). Intensity of emotions conveyed and elicited by familiar and unfamiliar music. Music Perception, 27, 177–182.

    Article  Google Scholar 

  2. Allport, A., Antonisa, B., & Reynolds, P. (1972). On the division of attention: a disproof of the single channel hypothesis. The Quarterly Journal of Experimental Psychology, 24, 225–235.

    PubMed  Article  Google Scholar 

  3. Balch, W. R., & Lewis, B. S. (1996). Music-dependent memory: the roles of tempo change and mood mediation. Journal of Experimental Psychology: Learning, Memory and Language, 22, 1354–1363.

    Article  Google Scholar 

  4. Cassileth, B. R., Vickers, A. J., & Magill, L. A. (2003). Music therapy for mood disturbance during hospitalization for autogolous stem cell transplantation: a randomized controlled trial. Cancer, 98, 2723–2729. doi:10.1200/JCO.2005.11.922.

    PubMed  Article  Google Scholar 

  5. Chabris, C. F. (1999). Prelude or requiem for the “Mozart effect”? Nature, 400, 826–827.

    PubMed  Article  Google Scholar 

  6. Fox, E. (2008). Emotion science: cognitive and neuroscientific approaches to understanding human emotions. Hampshire: Palgrave Macmillan.

    Google Scholar 

  7. Gerardi, G. M., & Gerken, L. (1995). The development of affective response to modality and melodic contour. Music Perception, 12, 279–290.

    Google Scholar 

  8. Halpern, D. F. (1992). Sex differences in cognitive abilities (2nd ed.). Hillsdale: Erlbaum.

    Google Scholar 

  9. Hebb, D. O. (1955). Drive and the CNS (conceptual nervous system). Psychological Review, 62, 243–354.

    PubMed  Article  Google Scholar 

  10. Hetland, L. (2000). Listening to music enhances spatial-temporal reasoning: evidence for the “Mozart effect”. Journal of Aesthetic Education, 34, 105–148.

    Article  Google Scholar 

  11. Husain, G., Thompson, W. F., & Schellenberg, E. G. (2002). Effects of musical tempo and mode on arousal, mood, and spatial abilities. Music Perception, 20, 151–171.

    Article  Google Scholar 

  12. Jones, D. M. (1999). The cognitive psychology of auditory distraction: the 1997 BPS Broadbent lecture. British Journal of Psychology, 90, 167–187.

    Article  Google Scholar 

  13. Jones, D. M., & Macken, W. J. (1993). Irrelevant tones produce an irrelevant speech effect: implications for phonological coding in working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 369–381.

    Article  Google Scholar 

  14. Jones, D. M., & Tremblay, S. (2000). Interference in memory by process or content? A reply to Neath (2000). Psychonomic Bulletin and Review, 7, 550–558.

    PubMed  Article  Google Scholar 

  15. Kimura, D. (1996). Sex, sexual orientation and sex hormones influence human cognitive function. Current Opinion in Human Neurobiology, 6, 259–263.

    Article  Google Scholar 

  16. Krumhansl, C. L. (1997). An exploratory study of musical emotions and psychophysiology. Canadian Journal of Experimental Psychology, 51, 336–353.

    PubMed  Google Scholar 

  17. Nantais, K. M., & Schellenberg, E. G. (1999). The Mozart effect: an artefact of preference. Psychological Science, 10, 370–373.

    Article  Google Scholar 

  18. Perham, N., Banbury, S. P., & Jones, D. M. (2007). Reduction in auditory distraction by retrieval strategy. Memory, 15, 465–473.

    PubMed  Article  Google Scholar 

  19. Perham, N., Marsh, J. E., & Jones, D. M. (2009). Syntax and serial recall: How language supports memory for order. Quarterly Journal of Experimental Psychology, 62, 1285–1293. doi:10.1080/17470210802635599.

    Article  Google Scholar 

  20. Perham, N., & Sykora, M. (2012). Disliked music can be better for performance than liked music. Applied Cognitive Psychology. doi:10.1002/acp. 2826.

  21. Perham, N., & Vizard, J. (2010). Can preference for background music mediate the irrelevant sound effect? Applied Cognitive Psychology, 25(4), 625–631. doi:10.1002/acp. 1731.

    Article  Google Scholar 

  22. Power, M. J., & Dalgleish, T. (2008). Cognition and emotion: from order to disorder (2nd ed.). Hove: Taylor Francis.

    Google Scholar 

  23. Rauscher, F. H., Shaw, G. L., & Ky, K. N. (1993). Music and spatial task performance. Nature, 365, 611.

    PubMed  Article  Google Scholar 

  24. Rickard, N. S., Toukhsati, S. R., & Field, S. E. (2005). The effect of music on cognitive performance: insight from neurobiological and animal studies. Behavioural and Cognitive Neuroscience Reviews, 4, 235. doi:10.1177/1534582305285869.

    Article  Google Scholar 

  25. Salamé, P., & Baddeley, A. (1989). Effect of background music on phonological short-term memory. The Quarterly Journal of Experimental Psychology, 14, 107–122.

    Google Scholar 

  26. Schachter, S., & Singer, J. E. (1962). Cognitive, social and physiological determinants of emotional state. Psychological Review, 69, 379–99.

    PubMed  Article  Google Scholar 

  27. Schellenberg, E. G. (2005). Music and cognitive abilities. Current Directions in Psychological Science, 14, 322–325.

    Article  Google Scholar 

  28. Schellenberg, E. G., Peretz, I., & Vieillard, S. (2008). Liking for happy- and sad-sounding music: effects of exposure. Cognition and Emotion, 22, 218–237.

    Article  Google Scholar 

  29. Schlittmeier, S. J., Hellbrück, J., & Klatte, M. (2008). Does irrelevant music cause and irrelevant sound effect for auditory items? European Journal of Cognitive Psychology, 20, 252–271.

    Article  Google Scholar 

  30. Shepard, R., & Metzler, J. (1971). Mental rotation of three dimensional objects. Science, 171, 701–703.

    PubMed  Article  Google Scholar 

  31. Siedlecki, S. L., & Good, M. (2006). Effect of music on power, pain, depression and disability. Journal of Advanced Nursing, 54, 553–562.

    Article  Google Scholar 

  32. Strayer, D. L., & Johnston, W. A. (2001). Driven to distraction: dual-task studies of simulated driving and conversing on a cellular phone. Psychological Science, 12, 462–466.

    PubMed  Article  Google Scholar 

  33. Tan, S., Pfordresher, P., & Harré, R. (2010). Psychology of music. Hove and New York: Psychology Press.

    Google Scholar 

  34. Thompson, W. F., Schellenberg, E. G., & Husain, G. (2001). Arousal, mood, and the Mozart effect. Psychological Science, 12, 248–251.

    PubMed  Article  Google Scholar 

  35. Tremblay, S., Nicholls, A. P., Alford, D., & Jones, D. M. (2000). The ISE: does speech play a special role? Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 1750–1754.

    PubMed  Article  Google Scholar 

  36. Wyttenbach, R. A. (2006). PsyCog: explorations in perception and cognition. Sunderland: Sinauer Associates, Inc.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nick Perham.

Appendix

Appendix

Table 1

Table 2

Table 2 Slow tempo music as chosen by participants

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Perham, N., Withey, T. Liked Music Increases Spatial Rotation Performance Regardless of Tempo. Curr Psychol 31, 168–181 (2012). https://doi.org/10.1007/s12144-012-9141-6

Download citation

Keywords

  • Tempo
  • Preference
  • Music
  • Spatial rotation