Advertisement

Acta Analytica

, Volume 30, Issue 2, pp 117–132 | Cite as

Divisibility and Extension: a Note on Zeno’s Argument Against Plurality and Modern Mereology

  • Claudio Calosi
  • Vincenzo Fano
Article

Abstract

In this paper, we address an infamous argument against divisibility that dates back to Zeno. There has been an incredible amount of discussion on how to understand the critical notions of divisibility, extension, and infinite divisibility that are crucial for the very formulation of the argument. The paper provides new and rigorous definitions of those notions using the formal theories of parthood and location. Also, it provides a new solution to the paradox of divisibility which does not face some threats that can possibly undermine the standard Lebesgue measure solution to such a paradox.

Keywords

(Infinite) divisibility Extension Parthood Location 

References

  1. Balashov, Y. (2010). Persistence and spacetime. Oxford: Oxford University Press.CrossRefGoogle Scholar
  2. Barnes, J. (1982). The presocratic philosophers. London: Routledge.Google Scholar
  3. Casati, R., & Varzi, A. (1999). Parts and places. Cambridge: MIT Press.Google Scholar
  4. Cotnoir, A. (2010). Antisymmetry and non-extensional mereology. The Philosophical Quarterly, 60(239), 396–405.CrossRefGoogle Scholar
  5. Cotnoir, A., & Bacon, A. (2012). Non-wellfounded mereology. Review of Symbolic Logic, 52, 187–204.CrossRefGoogle Scholar
  6. Fano, V. (2012). I paradossi di zenone. Roma: Carocci.Google Scholar
  7. Furley, D. J. (1967). Two studies in the Greek atomism. Princeton: Princeton University Press.Google Scholar
  8. Grünbaum, A. (1952). A consistent conception of the extended linear continuum as an aggregate of unextended elements. Philosophy of Science, 19, 280–306.CrossRefGoogle Scholar
  9. Grünbaum, A. (1968). Modern science and Zeno’s paradoxes. London: Allen and Unwin.Google Scholar
  10. Huggett, N. (2010), Zeno’s paradoxes. http://plato.stanford.edu/entries/paradox-zeno/.Google Scholar
  11. Lee, H. D. P. (1936). Zeno of Elea. Amsterdam: Hakkert.Google Scholar
  12. Leonard, H. S., & Goodman, N. (1940). The calculus of individuals and its uses. Journal of Symbolic Logic, 5, 45–55.CrossRefGoogle Scholar
  13. Lewis, D. K. (1986). The plurality of worlds. Oxford: Blackwell.Google Scholar
  14. Markosian, N. (1998). Simples. Australasian Journal of Philosophy, 76, 213–226.CrossRefGoogle Scholar
  15. Makin, S. (1998), Zeno of Elea. In Routledge encyclopedia of philosophy, ed. by E. Craig, London, vol. 10, pp. 843–853.Google Scholar
  16. Massey, G. (1969). Panel’s discussion of Grünbaum philosophy of science. Philosophy of Science, 36, 331–345.CrossRefGoogle Scholar
  17. McDaniel, K. (2007). Extended simples. Philosophical Studies, 133, 131–141.CrossRefGoogle Scholar
  18. Parsons, J. (2006). Theories of location. Oxford Studies in Metaphysics, 3, 201–232.Google Scholar
  19. Salmon, W. (1975). Space, time and motion. A philosophical introduction. Encino: Dickenson.Google Scholar
  20. Scala, M. (2002). Homogeneous simples. Philosophy and Phenomenological Research, 64, 393–397.CrossRefGoogle Scholar
  21. Sider, T. (2001). Four-dimensionalism. An ontology of persistence and time. Oxford: Clarendon.CrossRefGoogle Scholar
  22. Sider, T. (2007). Parthood. Philosophical Review, 116, 51–91.CrossRefGoogle Scholar
  23. Simons, P. (1987). Parts. A study in ontology. Oxford: Clarendon.Google Scholar
  24. Skyrms, B. (1983). Zeno’s paradox of measure. In R. S. Cohen & L. Laudan (Eds.), Physics, philosophy and psychoanalysis. Essays in honour of Adolf Grünbaum (pp. 223–254). Dordrecht: Reidel.CrossRefGoogle Scholar
  25. Sorabji, R. (1983). Time, creation and the continuum. Chicago: The University of Chicago Press.Google Scholar
  26. Van Inwagen, P. (1981). The doctrine of arbitrary undetached parts. Pacific Philosophical Quarterly, 62, 123–137.Google Scholar
  27. Varzi, A. (2008). The extensionality of parthood and composition. The Philosophical Quarterly, 58(1), 108–133.CrossRefGoogle Scholar
  28. White, M. J. (1992). The continuous and the discrete. Oxford: Clarendon.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Basic Sciences and FoundationsUniversity of UrbinoUrbinoItaly

Personalised recommendations