Simple Concepts


To talk about simple concepts presupposes that the notion of concept has been aptly explicated. I argue that a most adequate explication should abandon the set-theoretical paradigm and use a procedural approach. Such a procedural approach is offered by Tichý´s Transparent Intensional Logic (TIL). Some main notions and principles of TIL are briefly presented, and as a result, concepts are explicated as a kind of abstract procedure. Then it can be shown that simplicity, as applied to concepts, is well definable as a property relative to conceptual systems, each of which is determined by a finite set of simple (‘primitive’) concepts. Refinement as a method of replacing simple concepts by compound concepts is defined.

This is a preview of subscription content, access via your institution.


  1. 1.

    Not taking into account idioms, of course, and not trying to get a most precise definition. As for idioms, it is clear that, e.g., an old maid need not be old or a maid and that old maid means the same property as spinster.

  2. 2.

    Before we explicate the notion of concept, we will use capitals to indicate that we mean the respective concept.

  3. 3.

    See Carnap (1950), §2-3

  4. 4.

    See, e.g. Materna (1998, 2004); see also Tichý (1968, 1969, reprinted in 2004).

  5. 5.

    Cf. Materna, Petrželka (2008).

  6. 6.

    Bar-Hillel (1950). See Materna (2004, p. 54)

  7. 7.

    More generally: see Ad ii).

  8. 8.

    “Of the sense we say that it determines the denotation, or is a concept of the denotation.”

  9. 9.

    “…anything which is capable of being the sense of some name in some language, actual or possible, is a concept” (Church 1985, p. 41).

  10. 10.

    Why “constructing”? This will be clear later, below. Why not simply “a function”? Consider the principle Fu: I´ and II´ are one and the same function. Both expressions I and II would have one and the same sense.

  11. 11.

    Carnap himself did not accept Quine´s critique.

  12. 12.

    The detailed story of Church´s creating his alternatives and his final choice can be found in Anderson (1998).

  13. 13.

    See also Jespersen (2010)

  14. 14.

    “Intensions” here are not the standard intensions, i.e. functions from possible worlds.

  15. 15.

    Cresswell recognized the role of functions as “a universal medium of explication, not just in mathematics but in general” (Tichý, see above).

  16. 16.

    See Montague (1974). Montague´s system shares some features with TIL, but differs in some important points. First of all, it has not reached the higher levels of types and essentially remained on the set-theoretical 1st order λ-calculus. As for a critical comparison with TIL, see Tichý (1994) or DJM (2010).

  17. 17.

    The result of constructing often depends on valuation of variables (see later). Then construct means v-construct, where v is a parameter of valuation. We omit this v here.

  18. 18.

    Otherwise, we would have to define such a language, which would lead to an infinite regress.

  19. 19.

    This function associates every variable with an object. (Tarski´s definition!) A detailed explication can be found in Tichý (1988, p. 56–61). Remember also that the letters we usually declare to be variables (like x, y, z, …,f, g,…, m, n, …) are names of variables: the latter are special constructions and, therefore, extra-linguistic procedures.

  20. 20.

    By ‘planet’ we mean here ‘planet of our Solar system’.

  21. 21.

    Not taking into account the mentalist, cognitivist theories.

  22. 22.

    Of course, these proponents of concept complexity would appreciate Bolzano as well.

  23. 23.

    the is a function that is defined only on Singletons K and constructs that unique member of K.

  24. 24.

    When not specified, we mean real numbers.

  25. 25.

    α- and η-equivalence: terminology of λ-calculi.

  26. 26.

    See Ken Daley (2009), where the notion of simplification is defined.

  27. 27.

    See Materna (2004, p.2.2).

  28. 28.

    It is unnecessary (and often impossible) to present some fictive conceptual systems in a way other than as fragments relevant for some purpose.

  29. 29.

    See Duží (2010), where refinement was first defined. Our Definition 12 is the Definition 5.5 from DJM, p. 524.

  30. 30.

    Types of expressions are derivatively the same as the types of respective denotations.


  1. Anderson, C. A. (1998). Alonzo Church’s contributions to philosophy and intensional logic. The Bulletin of Symbolic Logic, 4, 129–171.

    Article  Google Scholar 

  2. Bar-Hillel, Y. (1950). Bolzano´s Definition of Analytic Propositions. Methodos II, 5, 32–55.

    Google Scholar 

  3. Bealer, G. (1982). Quality and Concept. Oxford: Clarendon Press.

    Google Scholar 

  4. Bolzano, B. (1837). Wissenschaftslehre. Sulzbach: von Seidel.

    Google Scholar 

  5. Carnap, R. (1947). Meaning and Necessity. Chicago: Chicago University Press.

    Google Scholar 

  6. Carnap, R. (1950). Logical Foundations of Probability. Chicago: Chicago University Press.

    Google Scholar 

  7. Church, A. (1954). Intensional isomorphism and identity of belief. Philosophical Studies, 5, 65–73.

    Article  Google Scholar 

  8. Church, A. (1956). Introduction to Mathematical Logic. Princeton: Princeton University Press.

    Google Scholar 

  9. Church, A. (1985). Intensional Semantics. In: A. P. Martinich (Ed.), The Philosophy of Language (pp. 40–47) Oxford UP.

  10. Church, A. (1993). A revised formulation of the logic of sense and denotation. Alternative (1). Noûs, 27, 141–157.

    Article  Google Scholar 

  11. Cresswell, M. J. (1975). Hyperintensional logic. Studia Logica, 34, 25–38.

    Article  Google Scholar 

  12. Cresswell, M. J. (1985). Structured Meanings. Cambridge: MIT Press.

    Google Scholar 

  13. Daley, K. (2009). The Structure of Lexical Concepts. Philosophical Studies, 150(3), 349–372.

    Article  Google Scholar 

  14. DJM: Duží, M, Jespersen, B., Materna, P. (2010). Procedural Semantics for Hyperintensional Logic. Springer.

  15. Duží, M. (2010). The paradox of inference and the non-triviality of analytic information. Journal of Philosophical Logic, 39(5), 473–510.

    Article  Google Scholar 

  16. Fodor, J. A. (1998). Concepts (Where Cognitive Science Went Wrong). Oxford: Clarendon Press.

    Google Scholar 

  17. Frege, G. (1891). Funktion und Begriff. Jena: H. Pohle. (Vortrag, gehalten in der Sitzung vom 9. Januar 1891 der Jenaischen Gesellschaft für Medizin und Naturwissenschaft, Jena, 1891).

  18. Frege, G. (1892a). Über Sinn und Bedeutung. Zeitschrift für Philosophie und philosophische Kritik, 100, 25–50.

    Google Scholar 

  19. Frege, G. (1892b). Über Begriff und Gegenstand. Vierteljahrschrift für wissenschaftliche Philosophie, 16, 192–205.

    Google Scholar 

  20. Glock, H. J. (2009). Concepts: Where Subjectivism Goes Wrong. Philosophy, 84, 5–29.

    Article  Google Scholar 

  21. Horák, A. (2002). The Normal Translation Algorithm in Transparent Intensional Logic for Czech, PhD Thesis, Masaryk University, Brno, retrievable at

  22. Jespersen, B. (2003). Why the tuple theory of structured propositions isn’t a theory of structured propositions. Philosophia, 31, 171–183.

    Article  Google Scholar 

  23. Jespersen, B. (2010). Hyperintensions and procedural isomorphism: Alternative (1/2). In T. Czanecki, K. Kijania-Placek, O. Poller, & J. Woleński (Eds.), The Analytical Way. Proceedings of the 6th European Congress of Analytic Philosophy (pp. 299–320). London: College Publications.

    Google Scholar 

  24. King, J. C. (2001). Structured propositions., version as of 8 August 2001.

  25. Kleene, S. C. (1952). Introduction to Metamathematics. New York, Toronto: D. van Nostrand Company.

  26. Materna, P. (1998). Concepts and Objects (Acta Philosophica Fennica, Vol. 63). Helsinki: Philosophical Society of Finland.

    Google Scholar 

  27. Materna, P. (2004). Conceptual Systems. Berlin: Logos.

    Google Scholar 

  28. Materna, P., & Petrželka, J. (2008). Definition and concept. Aristotelian definition vindicated. Studia Neoaristotelica, 5(1), 3–37.

    Article  Google Scholar 

  29. Montague, R. (1974). In R. Thomason (Ed.), Formal Philosophy: Selected Papers of R. Montague. New Haven: Yale University Press.

    Google Scholar 

  30. Moschovakis, Y. N. (1994). Sense and denotation as algorithm and value. In J. Väänänen & J. Oikkonen (Eds.), Lecture Notes in Logic (Vol. 2, pp. 210–249). Berlin: Springer.

    Google Scholar 

  31. Quine, W.v.O. 1953 (1963)] W.v.O. Quine: “Two dogmas of empiricism”, pp. 20–46 in: From a logical point of view, 2nd ed., Harper & Row, Publishers, New York and Evanston.

  32. Russell, B. (1903). The Principles of Mathematics. Cambridge: University Press.

    Google Scholar 

  33. Tichý, P. (1968). Smysl a procedura. Filosofický časopis, 16, 222–232. Translated as ‘Sense and procedure’ in (Tichý 2004: 77–92).

    Google Scholar 

  34. Tichý, P. (1969). Intensions in terms of Turing machines. Studia Logica, 26, 7–25. Reprinted in (Tichý 2004: 93–109).

    Article  Google Scholar 

  35. Tichý, P. (1978). Questions, answers and logic. American Philosophical Quarterly, 15, 275–284. Reprinted in (Tichý 2004: 293–304).

    Google Scholar 

  36. Tichý, P. (1986). Constructions. Philosophy of Science, 53, 514–534. Reprinted in (Tichý 2004: 599–621).

    Article  Google Scholar 

  37. Tichý, P. (1988). The Foundations of Frege’s Logic. Berlin, New York: De Gruyter.

    Google Scholar 

  38. Tichý, P. (1994). The analysis of natural language. From the logical point of view, 3, 42–80. Reprinted in (Tichý 2004: 801–841).

    Google Scholar 

  39. Tichý, P. (2004). Collected Papers in Logic and Philosophy, eds. V. Svoboda, B. Jespersen, and C. Cheyne. Prague: Filosofia, Czech Academy of Sciences; Dunedin: University of Otago Press.

Download references


I am grateful to the anonymous reviewer for his/her valuable improvements of the text.

This paper has been supported by the Grant Agency of Czech Republic Project No. P401/10/0792.

Author information



Corresponding author

Correspondence to Pavel Materna.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Materna, P. Simple Concepts. Acta Anal 28, 295–319 (2013).

Download citation


  • Concept
  • Conceptual system
  • Constructions
  • Set-theoretical paradigm
  • Transparent intensional logic