Knowledge, Technology & Policy

, Volume 23, Issue 1–2, pp 193–226 | Cite as

Pre-cognitive Semantic Information

Special Issue


This paper addresses one of the fundamental problems of the philosophy of information: How does semantic information emerge within the underlying dynamics of the world?—the dynamical semantic information problem. It suggests that the canonical approach to semantic information that defines data before meaning and meaning before use is inadequate for pre-cognitive information media. Instead, we should follow a pragmatic approach to information where one defines the notion of information system as a special kind of purposeful system emerging within the underlying dynamics of the world and define semantic information as the currency of the system. In this way, systems operating with semantic information can be viewed as patterns in the dynamics—semantic information is a dynamical system phenomenon of highly organized systems. In the simplest information systems, the syntax, semantics, and pragmatics of the information medium are co-defined. It proposes a new more general theory of information semantics that focuses on the interface role of the information states in the information system—the interface theory of meaning. Finally, with the new framework, it addresses the debate between weakly semantic and strongly semantic accounts of information, siding with the strongly semantic view because the pragmatic account developed here is a better generalization of it.


Semantic information Pragmatic information Dynamical systems Information systems Pre-cognitive systems WSI vs. SSI problem 


  1. Ackoff, R. L. (1958). Towards a behavioral theory of communication. Management Science, 4(3), 218–234.CrossRefGoogle Scholar
  2. Aczel, P., Israel, D. J., Katagiri, Y., & Peters, S. (Eds.) (1993). Situation theory and its applications (Vol. 3). Stanford: CSLI.Google Scholar
  3. Adriaans, P. (2008). Philosophy of information: Concepts and history. In P. Adriaans & J. van Benthem (Eds.), Handbook on the philosophy of information. Amsterdam: North Holland.Google Scholar
  4. Bar-Hillel, Y. (1964). Language and information: Selected essays on their theory and application. London: Addison Wesley.Google Scholar
  5. Barwise, J., & Seligman, J. (1997). Information flow: The logic of distributed systems. Cambridge tracks in theoretical computer science (no. 44). Cambridge: Cambridge University Press.Google Scholar
  6. Barwise, J., & Perry, J. (1983). Situations and attitudes. Cambridge: Bradford Book.Google Scholar
  7. Beer, R. (2000). Dynamical approaches to cognitive science. Trends in Cognitive Sciences, 4, 91–99.CrossRefGoogle Scholar
  8. Bogdan, R. J. (1988a). Information and semantic cognition: An ontological account. Mind and Language, 3(2), 81–122.CrossRefGoogle Scholar
  9. Bogdan, R. J. (1988b). Replies to commentators. Mind and Language, 3(2), 145–151.CrossRefGoogle Scholar
  10. Bogdan, R. J. (1994). Grounds for cognition: How goal-guided behavior shapes the mind. Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  11. Burch, R. (2010). Charles Sanders Peirce. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (2010 ed.). Stanford: Metaphysics Research Lab, CSLI, Stanford UniversityGoogle Scholar
  12. Carnap, R., & Bar-Hillel, Y. (1952). An outline of a theory of semantic information. Tech. rept. 247. Cambridge: MIT.Google Scholar
  13. Chemero, A. (2009). Radical embodied cognitive science. Cambridge: MIT.Google Scholar
  14. Cooper, R., Mukai, K., Barwise, J., & Perry, J. (Eds.) (1991). Situation theory and its applications (Vol. 2). Stanford: CSLI.Google Scholar
  15. Cooper, R., Mukai, K., & Perry, J. (Eds.) (1990). Situation theory and its applications (Vol. 1). Stanford: CSLI.Google Scholar
  16. Dennett, D. C. (1991). Real patterns. Journal of Philosophy, LXXXVIII, 7–51.Google Scholar
  17. Di Paolo, E. A. (2005). Autopoiesis, adaptivity, teleology, agency. Phenomenology and the Cognitive Sciences, 4, 429–452.CrossRefGoogle Scholar
  18. Dretske, F. (1981). Knowledge and the flow of information. Cambridge: MIT.Google Scholar
  19. Dretske, F. (1988). Commentary: Bogdan on information. Mind and Language, 3(2), 141–144.CrossRefGoogle Scholar
  20. Fetzer, J. H. (2004). Information: Does it have to be true? Minds and Machines, 14, 223–229.CrossRefGoogle Scholar
  21. Floridi, L. (2003). Information. In L. Floridi (Ed.), The Blackwell guide to the philosophy of computing and information. Oxford: Blackwell.CrossRefGoogle Scholar
  22. Floridi, L. (2004). Outline of a theory of strongly semantic information. Minds and Machines, 14(2), 197–222.CrossRefGoogle Scholar
  23. Floridi, L. (2005). Is information meaningful data? Philosophy and Phenomenological Research, 70(2), 351–370.CrossRefGoogle Scholar
  24. Floridi, L. (2007). In defence of the veridical nature of semantic information. European Journal of Analytic Philosophy, 3(1), 31–41.Google Scholar
  25. Floridi, L. (2008a). The method of levels of abstraction. Minds and Machines, 18(3), 303–329.CrossRefGoogle Scholar
  26. Floridi, L. (2008b). Trends in the philosophy of information. In P. Adriaans & J. van Benthem (Eds.), Handbook of philosophy of information (pp. 113–132). Amsterdam: North Holland.CrossRefGoogle Scholar
  27. Floridi, L. (2010). The philosophy of information. Oxford: Oxford University Press.Google Scholar
  28. Floridi, L., & Sanders, J. (2004). Levellism and the method of abstraction. IEG Research Report IEG-RR-4. Oxford: Oxford University.Google Scholar
  29. Floridi, L., & Taddeo, M. (2005). The symbol grounding problem: A critical review of fifteen years of research. Journal of Experimental and Theoretical Artificial Intelligence, 17(4), 419–445.CrossRefGoogle Scholar
  30. Floridi, L., & Taddeo, M. (2007). A praxical solution of the symbol grounding problem. Minds and Machines, 17(4), 369–389.CrossRefGoogle Scholar
  31. Gao, J., Cao, Y., Tung, W. -w., & Hu, J. (2007). Multiscale analysis of complex time series: Integration of chaos and random fractal theory, and beyond. Hoboken: Wiley-Interscience.Google Scholar
  32. Grunwald, P. D., & Vitanyi, P. M. B. (2008). Algorithmic information theory. In P. Adriaans & J. van Benthem (Eds.), Handbook on the philosophy of information. Amsterdam: North Holland.Google Scholar
  33. Haken, H. (1993a) Advanced synergetics: Instability hierarchies of self-organizing systems and devices (3rd ed.). Berlin: Springer.Google Scholar
  34. Haken, H. (1993b). Synergetics: An introduction (3rd ed.). Berlin: Springer.Google Scholar
  35. Haken, H. (2000). Information and self-organization: A macroscopic approach to complex systems (2nd ed.). Berlin: Springer.Google Scholar
  36. Hinrichsen, D., & Pritchard, A. J. (2005). Mathematical systems theory I—modelling, state space analysis, stability and robustness. Berlin: Springer.Google Scholar
  37. Hirsch, M. W., Smale, S., & Devaney, R. L. (2004). Differential equations, dynamical systems, and an introduction to chaos. New York: Academic.Google Scholar
  38. Israel, D. J., & Perry, J. R. (1990). What is information? In Hanson, P. (Ed.), Information, language and cognition: Vancouver studies in cognitive science (Vol. I). Vancouver: University of British Columbia Press.Google Scholar
  39. Ivancevic, V. G., & Ivancevic, T. T. (2008). Complex nonlinearity: Chaos, phase transitions, topology change and path integrals. Understanding complex systems. Berlin: Springer.Google Scholar
  40. Katok, A., & Hasselblatt, B. (1996). Introduction to the modern theory of dynamical systems. Cambridge: Cambridge University Press.Google Scholar
  41. Kelso, J., & Scott, A. (1995). Dynamic patterns: The self-organization of brain and behavior. Cambridge: MIT Press.Google Scholar
  42. Ladyman, J., Ross, D., Spurrett, D., & Collier, J. (2007). Every thing must go: Metaphysics naturalized. Oxford: Oxford University Press.CrossRefGoogle Scholar
  43. Levine, W. S. (Ed.) (1996). The control handbook. New York: CRC.Google Scholar
  44. Li, M., & Vitanyi, P. (1997). An introduction to Kolmogorov complexity and its applications. Berlin: Springer.Google Scholar
  45. MacKay, D. M. (1969a). Information, mechanisms and meaning. Cambridge: MIT.Google Scholar
  46. MacKay, D. M. (1969b). Meaning and mechanism. In Information, mechanism and meaning. Cambridge: MIT.Google Scholar
  47. MacKay, D. M. (1969c). The place of ‘meaning’ in the theory of information. In Information, mechanism and meaning. Cambridge: MIT.Google Scholar
  48. Maturana, H. R., & Varela, F. J. (1980). Autopoiesis and cognition: The realization of the living. Berlin: Springer.Google Scholar
  49. Millikan, R. (1987). Language, thought, and other biological categories: New foundations for realism. Cambridge: MIT.Google Scholar
  50. Millikan, R. (1995). White queen psychology and other essays for Alice. Cambridge: MIT.Google Scholar
  51. Millikan, R. (2006). Varieties of meaning: The 2002 Jean Nicod lectures. Cambridge: MIT.Google Scholar
  52. Morris, C. W. (1938). Foundations of the theory of signs. Chicago: University of Chicago Press.Google Scholar
  53. Nauta, D. (1970). The meaning of information. The Hague: Mouton.Google Scholar
  54. Newell, A., & Simon, H. (1981). Computer science as empirical enquiry. In J. Hougeland (Ed.), Mind design. Cambridge: MIT.Google Scholar
  55. Peirce, C. (1940). Logic as semiotic: The theory of signs. In The philosophy of Peirce: Selected writings. London: Routledge and Kegan Paul.Google Scholar
  56. Putnam, H. (1975). The meaning of ‘meaning’. In K. Gunderson (Ed.), Language, mind and knowledge. Minnesota Studies in the Philosophy of Science, no. VII. Minneapolis: University of Minnesota Press.Google Scholar
  57. Seligmen, J. (1991). Physical situations and information flow. In R. Cooper, K. Mukai, J. Barwise, & J. Perry (Eds.), Situation theory and its applications (Vol. 2). Stanford: CSLI.Google Scholar
  58. Sethna, J. P. (2009). Statistical mechanics: Entropy, order parameters, and complexity. Oxford: Clarendon.Google Scholar
  59. Shannon, C. (1948). The mathematical theory of communication. Bell Systems Technical Journal, 27, 379–423.Google Scholar
  60. Thelen, E., & Smith, L. (1994). Dynamics system approach to the development of cognition and action. Cambridge: MIT.Google Scholar
  61. Turchin, V. (1990). Cybernetics and philosophy. In F. Geyer (Ed.), The cybernetics of complex systems (pp. 61–74). Salinas: Intersystems.Google Scholar
  62. Vakarelov, O. (2011). The cognitive agent: Overcoming informational limits. Philosophical Psychology, in press.Google Scholar
  63. van Gelder, T. (1998). The dynamical hypothesis in cognitive science. Behavioral and Brain Sciences, 21, 615–628.Google Scholar
  64. Varela, F. (2000). El fenomeno de la vida. Santiago de Chile: Dolmen Ediciones.Google Scholar
  65. Varela, F. J., Thompson, E. T., & Rosch, E. (1992). The embodied mind. Cambridge: MIT.Google Scholar
  66. von Uexküll, J. (1909). Unwelt und Innenwelt der Tierre. Berlin: Springer.Google Scholar
  67. von Uexküll, J. (1932). Streifziige durch die Umwelten von Tieren und Menschen. Berlin: Springer.Google Scholar
  68. von Uexküll, J. (1982). The theory of meaning. Semiotica, 42(1), 25–82.CrossRefGoogle Scholar
  69. Weaver, W., & Shannon, C. E. (1963). The mathematical theory of communication. Champaign: Univ. of Illinois Press.Google Scholar
  70. Weber, A., & Varela, F. (2002). Life after Kant: Natural purposes and the autopoietic foundations of biological individuality. Phenomenology and the Cognitive Sciences, 1(2), 97–125.CrossRefGoogle Scholar
  71. Wiener, N. (1965). Cybernetics: Or the control and communication in the animal and the machine. Cambridge: MIT.Google Scholar
  72. Williams, P. L., & Beer, R. D. (2010). Information dynamics of evolved agents. In From animals to animats 11: Proceedings of the 11th international conference on simulation of adaptive behavior.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of ArizonaTucsonUSA

Personalised recommendations