Skip to main content
Log in

Rapid analysis of lithium in serum samples by thermal ionization ion mobility spectrometry

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

A new application of thermal ionization ion mobility spectrometry (TI–IMS) was presented for the fast determination of lithium ion (Li+) in serum samples. This research aims to provide a selective approach to facilitate lithium monitoring for bipolar patients. The method is based on an initial step of quick–burning the organic content of the diluted serum sample on a hot filament followed by the emission of alkali ions remained in the ash. The drift tube temperature was optimized to maximize the separation of signal from the other existing alkali ions, sodium (Na+) and potassium (K+). The filament temperature and the dilution ratio were also optimized for best observation of the Li+ signal among the excess amount of Na+ and K+. The best peak resolution was obtained at 1:200 dilution ratio and drift tube temperature of 160 °C. TI–IMS demonstrated high sensitivity in both diluted standard and serum sample solution (0.21 μM for LOD and 1.50 μM for LOQ). The Relative standard deviation of the lithium determination was obtained to be 5.4%. Method validation was conducted by comparing the results with those obtained through the inductively coupled plasma optical emission spectrometry (ICP–OES) method. A good agreement between the results was observed indicating that the TI–IMS method can be potentially applied to routine analysis of biological samples. Rapidity, ease of operation and low–cost analysis are superior features of the proposed technique over the traditional approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rybakowski JK (2018) Challenging the negative perception of lithium and optimizing its long-term administration. Front Mol Neurosci 11:349–356

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Grizelj M, Crnković D, Kostanjšak L, Vrkić N, Karlović D (2017) Comparison of lithium concentration in serum, plasma and erythrocytes. Alcohol Psychiatr Res : J Psychiatr Res Addict 53(2):99–114

    Google Scholar 

  3. Hopkins HS, Gelenberg AJ (2000) Serum lithium levels and the outcome of maintenance therapy of bipolar disorder. Bipolar Disord 2(3):174–179

    CAS  PubMed  Google Scholar 

  4. Albero M, Ortuno J, Garcia M, Cuartero M, Alcaraz M (2010) Novel flow-through bulk optode for spectrophotometric determination of lithium in pharmaceuticals and saliva. Sens Actuators B Chem 145(1):133–138

    CAS  Google Scholar 

  5. Amdisen A (1978) Clinical and serum-level monitoring in lithium therapy and lithium intoxication. J Anal Toxicol 2(5):193–202

    CAS  Google Scholar 

  6. Zhao J, Gao P, Wu S, Zhu D (2009) Superiority of nitric acid for deproteinization in the determination of trace lithium in serum by graphite furnace atomic absorption spectrometry. J Pharm Biomed Anal 50(5):1075–1079

    CAS  PubMed  Google Scholar 

  7. Rahman S, Khalid N, Iqbal M (2003) Lithium determination in whole blood by flame atomic emission spectrometry. Nucleus (Islamabad) 40:19–22

    Google Scholar 

  8. Dai L, Wigman L, Zhang K (2015) Sensitive and direct determination of lithium by mixed-mode chromatography and charged aerosol detection. J Chromatogr A 1408:87–92

    CAS  PubMed  Google Scholar 

  9. Xie RY, Christian GD (1986) Serum lithium analysis by coated wire lithium ion selective electrodes in a flow injection analysis dialysis system. Anal Chem 58(8):1806–1810

    CAS  PubMed  Google Scholar 

  10. Novell M, Guinovart T, Blondeau P, Rius FX, Andrade FJ (2014) A paper-based potentiometric cell for decentralized monitoring of li levels in whole blood. Lab Chip 14(7):1308–1314

    CAS  PubMed  Google Scholar 

  11. Cretin M, Alerm L, Bartroli J, Fabry P (1997) Lithium determination in artificial serum using flow injection systems with a selective solid-state tubular electrode based on nasicon membranes. Anal Chim Acta 350(1-2):7–14

    CAS  Google Scholar 

  12. Criscuolo F, Taurino I, Stradolini F, Carrara S, De Micheli G (2018) Highly-stable li+ ion-selective electrodes based on noble metal nanostructured layers as solid-contacts. Anal Chim Acta 1027:22–32

    CAS  PubMed  Google Scholar 

  13. Sewart R, Gärtner C, Klemm R, Schattschneider S, Becker H (2012) Microfluidic device for fast on-site biomedical diagnostic on the example of lithium analysis in blood. Biomed Eng-Biomed Technol 57:729–732

    Google Scholar 

  14. Pascali JP, Sorio D, Bortolotti F, Tagliaro F (2010) Rapid determination of lithium in serum samples by capillary electrophoresis. Anal Bioanal Chem 396(7):2543–2546

    CAS  PubMed  Google Scholar 

  15. da Silva CML, Almeida VG, Cassella RJ (2007) Determination of lithium in pharmaceutical formulations used in the treatment of bipolar disorder by flow injection analysis with spectrophotometric detection. Talanta 73(4):613–620

    PubMed  Google Scholar 

  16. Gracia LG, Rodríguez LC, Ceba MR (1997) Spectrophotometric determination of lithium with quinizarin in drugs and serum. Talanta 44(1):75–83

    CAS  PubMed  Google Scholar 

  17. Tabata M, Nishimoto J, Kusano T (1998) Spectrophotometric determination of lithium ion using a water-soluble octabromoporphyrin in aqueous solution. Talanta 46(4):703–709

    CAS  PubMed  Google Scholar 

  18. Sampson M, Ruddel M, Elin RJ (1994) Lithium determinations evaluated in eight analyzers. Clin Chem 40(6):869–872

    CAS  PubMed  Google Scholar 

  19. Iguchi K, Usuda K, Kono K, Dote T, Nishiura H, Shimahara M, Tanaka Y (1999) Urinary lithium: distribution shape, reference values, and evaluation of exposure by inductively coupled plasma argon-emission spectrometry. J Anal Toxicol 23(1):17–23

    CAS  PubMed  Google Scholar 

  20. Bianchi F, Maffini M, Mangia A, Marengo E, Mucchino C (2007) Experimental design optimization for the ICP-AES determination of Li, Na, K, Al, Fe, Mn and Zn in human serum. J Pharm Biomed Anal 43(2):659–665

    CAS  PubMed  Google Scholar 

  21. Goullé J-P, Mahieu L, Castermant J, Neveu N, Bonneau L, Lainé G et al (2005) Metal and metalloid multi-elementary ICP-MS validation in whole blood, plasma, urine and hair: reference values. Forensic Sci Int 153:39–44

    PubMed  Google Scholar 

  22. Rumbelow B, Peake M (2001) Performance of a novel spectrophotometric lithium assay on a routine biochemistry analyser. Ann Clin Biochem 38(6):684–686

    CAS  PubMed  Google Scholar 

  23. Baraj B, Niencheski LF, Trapaga RD, França RG, Cocoli V, Robinson D (1999) Study of interference in the flame atomic absorption spectrometric determination of lithium by using factorial design. Fresenius J Anal Chem 364(8):678–681

    CAS  Google Scholar 

  24. Zhao J (2014) Interference of sodium chloride in the determination of lithium by atomic spectrometry. Asian J Chem 26(13):3790–3794

    CAS  Google Scholar 

  25. Christian GD (1996) Analytical strategies for the measurement of lithium in biological samples. J Pharm Biomed Anal 14(8-10):899–908

    CAS  PubMed  Google Scholar 

  26. Gadzekpo V, Moody G, Thomas J (1986) Problems in the application of ion-selective electrodes to serum lithium analysis. Analyst 111(5):567–570

    CAS  PubMed  Google Scholar 

  27. Eiceman GA (1991) Advances in ion mobility spectrometry: 1980–1990. Crit Rev Anal Chem 22(1-2):471–490

    CAS  Google Scholar 

  28. Creaser CS, Griffiths JR, Bramwell CJ, Noreen S, Hill CA, Thomas CP (2004) Ion mobility spectrometry: a review. Part 1. Structural analysis by mobility measurement. Analyst 129(11):984–994

    CAS  Google Scholar 

  29. Vautz W, Baumbach JI, Uhde E (2006) Detection of emissions from surfaces using ion mobility spectrometry. Anal Bioanal Chem 384(4):980–986

    CAS  PubMed  Google Scholar 

  30. Gaik U, Sillanpää M, Witkiewicz Z, Puton J (2017) Nitrogen oxides as dopants for the detection of aromatic compounds with ion mobility spectrometry. Anal Bioanal Chem 409(12):3223–3231

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Vautz W, Michels A, Franzke J (2008) Micro-plasma: a novel ionisation source for ion mobility spectrometry. Anal Bioanal Chem 391(7):2609–2615

    CAS  PubMed  Google Scholar 

  32. Aladaghlo Z, Fakhari AR, Hasheminasab KS (2016) Application of electromembrane extraction followed by corona discharge ion mobility spectrometry analysis as a fast and sensitive technique for determination of tricyclic antidepressants in urine samples. Microchem J 129:41–48

    CAS  Google Scholar 

  33. Sorribes-Soriano A, Sánchez-Martínez S, Arráez-González R, Esteve-Turrillas F, Armenta S (2020) Methylone determination in oral fluid using microextraction by packed sorbent coupled to ion mobility spectrometry. Microchem J 153:104504

    CAS  Google Scholar 

  34. Dresser M (1968) The saha-langmuir equation and its application. J Appl Phys 39(1):338–339

    CAS  Google Scholar 

  35. Rao RM, Parab AR, Sasibhushan K, Aggarwal SK (2009) A robust methodology for high precision isotopic analysis of boron by thermal ionization mass spectrometry using Na2BO2+ ion. Int J Mass Spectrom 285(3):120–125

    CAS  Google Scholar 

  36. Roehl J, Spangler G, Donovan W, Nowak D (1992) Nonradioactive alkali cation source for ion mobility spectrometry. Proc. 1st workshop on ion mobility spectrometry (Mesalero, NM)

  37. Wu C, Hill HH, Rasulev UK, Nazarov E (1999) Surface ionization ion mobility spectrometry. Anal Chem 71(1):273–278

    CAS  PubMed  Google Scholar 

  38. Tabrizchi M (2003) Thermal ionization ion mobility spectrometry of alkali salts. Anal Chem 75(13):3101–3106

    CAS  PubMed  Google Scholar 

  39. Shahraki H, Tabrizchi M, Farrokhpor H (2018) Detection of explosives using negative ion mobility spectrometry in air based on dopant-assisted thermal ionization. J Hazard Mater 357:1–9

    CAS  PubMed  Google Scholar 

  40. Kimura K, Oishi H, Miura T, Shono T (1987) Lithium ion selective electrodes based on crown ethers for serum lithium assay. Anal Chem 59(19):2331–2334

    CAS  PubMed  Google Scholar 

  41. Tabrizchi M (2007) Research grade ion mobility spectrometer. Iranian Patent 42767

  42. Mason EA (1984) Ion mobility: its role in plasma chromatography. In: Carr TW (ed) Plasma chromatography. Plenium Press, New York, p 43

    Google Scholar 

  43. Tabrizchi M (2004) Temperature effects on resolution in ion mobility spectrometry. Talanta 62(1):65–70

    CAS  PubMed  Google Scholar 

  44. Lide DR (2000) CRC handbook of chemistry and physics, 3rd electronic edn. CRC, Boca Raton

    Google Scholar 

  45. Shahraki H (2019) Fabrication of positive and negative thermal ionization sources based on dopant for ion mobility spectrometry. [Phys Chem thesis]. Isfahan: Isfahan University of Technology

Download references

Acknowledgments

This project funded by Iran Science Elites Federation. The authors gratefully acknowledge Medical Center of Isfahan University of Technology as well as Dr. Baradaran Clinical Lab and the Legal Medicine Organization in Tehran for their cooperation. MT is grateful to the Chinese Academy of Sciences for the PIFI grant 2019VEA0033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Tabrizchi.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parchami, R., Tabrizchi, M., Shahraki, H. et al. Rapid analysis of lithium in serum samples by thermal ionization ion mobility spectrometry. Int. J. Ion Mobil. Spec. 23, 117–125 (2020). https://doi.org/10.1007/s12127-020-00264-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-020-00264-1

Keywords

Navigation