Skip to main content
Log in

The determination of salivary oxypurines before and after exercise by combined liquid chromatography-field asymmetric waveform ion mobility spectrometry-time-of-flight mass spectrometry

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

A method combining field asymmetric waveform ion mobility spectrometry with liquid chromatography-mass spectrometry (LC-FAIMS-MS) has been developed for the analysis of the oxypurine compounds hypoxanthine (HX) and xanthine (XA) in saliva. Separation of the oxypurines from interfering matrix components was investigated using FAIMS-MS. The selected FAIMS parameters were then applied to the rapid LC-FAIMS-MS analysis of HX and XA using a short chromatographic separation method (7 min). A comparison of the LC-MS method with and without FAIMS applied, resulted in improved discrimination from saliva matrix interferences and improved chromatographic peak integration for both HX and XA using a FAIMS separation. A quantitative evaluation of the LC-FAIMS-MS method was performed giving limits of detection of 2.0 ng mL−1 for HX and 1.8 ng mL−1 for XA, and limits of quantification of 6.6 ng mL−1 for HX and 6.0 ng mL−1 for XA. The developed LC-FAIMS-MS method was applied to the targeted analysis of the oxypurine metabolites in saliva collected from healthy male athletes (n = 11) before and after exercise designed to induce oxidative stress; post-exercise collection time-points included immediately after exercise, one hour and twenty-four hours’ post-exercise. The salivary concentrations of both HX and XA were lower after physical exercise, compared to the pre-exercise (rest) concentrations and returned to approximately pre-exercise levels after twenty-four hours. The method reported has the potential for monitoring the salivary oxypurines, HX and XA, as biomarkers of oxidative stress and in other clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Al-Shehri SS, Henman M, Charles BG, Cowley D, Shaw PN, Liley H, Tomarchio A, Punyadeera C, Duley JA (2013) Collection and determination of nucleotide metabolites in neonatal and adult saliva by high performance liquid chromatography with tandem mass spectrometry. J Chromatogr B 931:140–147

    Article  CAS  Google Scholar 

  2. Al-Shehri S, Knox CL, Liley HG, Cowley DM, Wright JR, Henman MG, Hewavitharana AK, Charles BG, Shaw PN, Sweeney EL, Duley JA (2015) Breastmilk-saliva interactions boost innate immunity by regulating the oral microbiome in early infancy. PLoS One 10:1–19

    Article  CAS  Google Scholar 

  3. Arthur KL, Turner MA, Brailsford AD, Kicman AT, Cowan DA, Reynolds JC, Creaser CS (2017) Rapid analysis of anabolic steroid metabolites in urine by combining field asymmetric waveform ion mobility spectrometry with liquid chromatography and mass spectrometry. Anal Chem 89(14):7431–7437

    Article  CAS  PubMed  Google Scholar 

  4. Brown LJ, Toutoungi DE, Devenport NA, Reynolds JC, Kaur-Atwal G, Boyle P, Creaser CS (2010) Miniaturized ultra high field asymmetric waveform ion mobility spectrometry combined with mass spectrometry for peptide analysis. Anal Chem 82(23):9827–9834

    Article  CAS  PubMed  Google Scholar 

  5. Brown LJ, Smith RW, Toutoungi DE, Reynolds JC, Bristow AWT, Ray A, Sage A, Wilson ID, Weston DJ, Boyle B, Creaser CS (2012) Enhanced analyte detection using in-source fragmentation of field asymmetric waveform ion mobility spectrometry-selected ions in combination with time-of-flight mass spectrometry. Anal Chem 84(9):4095–4103

    Article  CAS  PubMed  Google Scholar 

  6. Catinella S, Pelizzi N, Marsilio R, Zanol M, Porcelli B, Terzuoli L, Giubbolini M, Setacci C (2001) Determination of purine compounds in carotid artery plaque by liquid chromatography electrospray ionization tandem mass spectrometry. J Mass Spectrom 36(4):441–442

    Article  CAS  PubMed  Google Scholar 

  7. Chan S-H, Hung C-H, Shihd J-Y, Chu P-M, Cheng Y-H, Lin H-C, Hsieh P-L, Tsai K-L (2018) Exercise intervention attenuates hyperhomocysteinemia-induced aortic endothelial oxidative injury by regulating SIRT1 through mitigating NADPH oxidase/LOX-1 signaling. Redox Biol 14:116–125

    Article  CAS  PubMed  Google Scholar 

  8. Chiappin S, Antonelli G, Gatti R, De PEF (2007) Saliva specimen: a new laboratory tool for diagnostic and basic investigation. Clin Chim Acta 383(1-2):30–40

    Article  CAS  PubMed  Google Scholar 

  9. Dame ZT, Aziat F, Mandal R, Krishnamurthy R (2015) The human saliva metabolome. Metabolomics 11(6):1864–1883

    Article  CAS  Google Scholar 

  10. Daskalaki E, Easton C, Watson DG (2014) The application of Metabolomic profiling to the effects of physical activity. Curr Metabolomics 2:233–263

    Article  CAS  Google Scholar 

  11. Daskalaki E, Blackburn G, Kalna G, Zhang T, Anthony N, Watson DG (2015) A study of the effects of exercise on the urinary Metabolome using normalisation to individual metabolic output. Meta 5:119–139

    CAS  Google Scholar 

  12. Finsterer J (2012) Biomarkers of peripheral muscle fatigue during exercise. BMC Musculoskelet Disord 13, 13(1)

  13. Finsterer J, Drory VE (2016) Wet, volatile, and dry biomarkers of exercise-induced muscle fatigue. BMC Musculoskelet Disord 17(1):40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Flanders MM, Crist RA, Roberts WL, Rodgers GM (2005) Pediatric reference intervals for seven common coagulation assays. Clin Chem 51(9):1738–1742

    Article  CAS  PubMed  Google Scholar 

  15. Guan Y, Chu Q, Ye J (2004) Determination of uric acid in human saliva by capillary electrophoresis with electrochemical detection: potential application in fast diagnosis of gout. Anal Bioanal Chem 380(7-8):913–917

    Article  CAS  PubMed  Google Scholar 

  16. Guan Y, Wu T, Ye J (2005) Determination of uric acid and p-aminohippuric acid in human saliva and urine using capillary electrophoresis with electrochemical detection: potential application in fast diagnosis of renal disease. J Chromatogr B Analyt Technol Biomed Life Sci 821(2):229–234

    Article  CAS  PubMed  Google Scholar 

  17. Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement and significance. Am J Clin Nutr 57(5):715S–725S

    Article  CAS  PubMed  Google Scholar 

  18. Hellsten-Westing Y, Kaijser L, Ekblom B, Sjödin B (1994) Exchange of purines in human liver and skeletal muscle with short-term exhaustive exercise. Am J Phys 266:R81–R86

    Article  CAS  Google Scholar 

  19. Ito T, van Kuilenburg a B, Bootsma a H, Haasnoot a J, van Cruchten A, Wada Y, van Gennip a H (2000) Rapid screening of high-risk patients for disorders of purine and pyrimidine metabolism using HPLC-electrospray tandem mass spectrometry of liquid urine or urine-soaked filter paper strips. Clin Chem 46(4):445–452

    CAS  PubMed  Google Scholar 

  20. Ji LL (2015) Redox signaling in skeletal muscle: role of aging and exercise. Adv Physiol Educ 39(4):352–359

    Article  PubMed  Google Scholar 

  21. Kochanska B, Smolenski RT, Knap N (2000) Determination of adenine nucleotides and their metabolites in human saliva. Acta Biochim Pol 47(3):877–879

    CAS  PubMed  Google Scholar 

  22. Ligtenberg AJM, Brand HS, Van Den Keijbus PAM, Veerman ECI (2015) The effect of physical exercise on salivary secretion of MUC5B, amylase and lysozyme. Arch Oral Biol 60(11):1639–1644

    Article  CAS  PubMed  Google Scholar 

  23. Lu W, Kimball E, Rabinowitz JD (2006) A high-performance liquid chromatography-tandem mass spectrometry method for quantitation of nitrogen-containing intracellular metabolites. J Am Soc Mass Spectrom 17(1):37–50

    Article  CAS  PubMed  Google Scholar 

  24. Malkar A, Devenport NA, Martin HJ, Patel P, Turner MA, Watson P, Maughan RJ, Reid HJ, Sharp BL, Thomas CLP, Reynolds JC, Creaser CS (2013) Metabolic profiling of human saliva before and after induced physiological stress by ultra-high performance liquid chromatography-ion mobility-mass spectrometry. Metabolomics 9(6):1192–1201

    Article  CAS  Google Scholar 

  25. Margonis K, Fatouros IG, Jamurtas AZ, Nikolaidis MG, Douroudos I, Chatzinikolaou A, Mitrakou A, Mastorakos G, Papassotiriou I, Taxildaris K, Kouretas D (2007) Oxidative stress biomarkers responses to physical overtraining: implications for diagnosis. Free Radic Biol Med 43(6):901–910

    Article  CAS  PubMed  Google Scholar 

  26. Markelj J, Zupančić T, Pihlar B (2016) Optimization of high performance liquid chromatography method for simultaneous determination of some purine and pyrimidine bases. Acta Chim Slov 63(1):8–17

    Article  CAS  PubMed  Google Scholar 

  27. Murray AW (1966) Purine-Phosphoribosyltransferase activities in rat and mouse tissues and in Ehrlich ascites-tumour cells. Biochem J 100(3):664–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ong ES, Zou L, Li S, Cheah PY, Eu KW, Ong CN (2010) Metabolic profiling in colorectal cancer reveals signature metabolic shifts during tumorigenesis. Mol Cell Proteomics:1–42

  29. Radak Z, Chung HY, Goto S (2008) Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic Biol Med 44(2):153–159

    Article  CAS  PubMed  Google Scholar 

  30. Smith RW, Toutoungi DE, Reynolds JC, Bristow AWT, Ray A, Sage A, Wilson ID, Weston DJ, Boyle B, Creaser CS (2013) Enhanced performance in the determination of ibuprofen 1-β-O-acyl glucuronide in urine by combining high field asymmetric waveform ion mobility spectrometry with liquid chromatography-time-of-flight mass spectrometry. J Chromatogr A 1278:76–81

    Article  CAS  PubMed  Google Scholar 

  31. Soukup M, Biesiada I, Henderson A, Idowu B, Rodeback D, Ridpath L, Bridges EG, Nazar AM, Bridges K (2012) Salivary uric acid as a noninvasive biomarker of metabolic syndrome. Diabetol Metab Syndr 4(1):14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Speranza L, Grilli A, Patruno A, Franceschelli S, Felzani G, Pesce M, Vinciguerra I, de Lutiis M A, & Felaco M (2007) Plasmatic markers of muscular stress in isokinetic exercise. J Biol Regul Homeost Agents 21:23–31

  33. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84

    Article  CAS  PubMed  Google Scholar 

  34. Vollaard NB, Shearman JP, Cooper CE (2005) Exercise induced oxidative stress. Myths, realities and physiological relevance. Sports Med 35(12):1045–1062

    Article  PubMed  Google Scholar 

  35. Walsh NP (1999) The effects of high-intensity intermittent exercise on saliva IgA, total protein and alpha-amylase. J Sports Sci 17(2):129–134

    Article  CAS  PubMed  Google Scholar 

  36. Wilson L S, Wadley A J, Gyimah B, Reynolds J C, Mastana S S, & Lindley M R (2017) Investigation into the effects of fish oil supplementation on cycling performance, oxidative stress and inflammation in healthy male cyclists: a randomised, placebo controlled, cross-over study. Am J Clin Nutrition, Under Review

  37. Yigla M, Berkovich Y, Nagler RM (2007) Oxidative stress indices in COPD-Broncho-alveolar lavage and salivary analysis. Arch Oral Biol 52(1):36–43

    Article  CAS  PubMed  Google Scholar 

  38. Zielinski J, Kusy K, Rychlewski T (2011) Effect of training load structure on purine metabolism in middle-distance runners. Med Sci Sports Exerc 43(9):1798–1807

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Owlstone Ltd. and Loughborough University for financial support, and Owlstone Ltd. and Agilent Technologies for the provision of instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James C. Reynolds or Colin S. Creaser.

Electronic supplementary material

ESM 1

(DOCX 20.8 kb)

ESM 2

(DOCX 20.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arthur, K.L., Wilson, L.S., Turner, M.A. et al. The determination of salivary oxypurines before and after exercise by combined liquid chromatography-field asymmetric waveform ion mobility spectrometry-time-of-flight mass spectrometry. Int. J. Ion Mobil. Spec. 21, 87–95 (2018). https://doi.org/10.1007/s12127-018-0232-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-018-0232-4

Keywords

Navigation