Skip to main content
Log in

Rapid analysis of N-methylpyrrolidine in cefepime with thermal desorption ion mobility spectrometry

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

N-methyl-pyrrolidine (NMP) a potential impurity in the cephalosporin antibiotic cefepime is analysed using a rapid thermal desorption – ion mobility spectrometry (TD-IMS) method. The thermal desorption approach is shown to be capable of rapidly extracting NMP from the cefepime at 80 °C without causing thermal degradation of the cefepime. The ion mobility method has an analysis time of 1 min and demonstrates good linearity over a range from 0.3–3.0 μg ml−1 of NMP, with limits of detection and quantification of 0.056 and 0.1875 μg ml−1 respectively. The developed method was applied to the analysis of a cefepime sample and determined that NMP was present in a cefepime sample at a level of 0.0376 % with a percentage relative standard deviation (n = 6) of 3.2 %. This was compared with a LC-UV method which was in close agreement measuring NMP at 0.0384 % in the cefepime sample with a percentage RSD (n = 6) of 5.7 %. These results show that the TD-IMS method gives comparable data to the established LC methods and demonstrates the potential of TD-IMS for rapid measurement of volatile compounds in pharmaceutical matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Singh S, Handa T, Narayanam M, Sahu A, Junwal M, Shah RP (2012) A critical review on the use of modern sophisticated hyphenated tools in the characterization of impurities and degradation products. J Pharm Biomed Anal 69:148–173

    Article  CAS  Google Scholar 

  2. Barbhaiya RH, Forgue ST, Gleason CR, Knupp CA, Pittman KA, Weidler DJ, Movahhed H, Tenney J, Martin RR (1992) Pharmacokinetics of cefepime after single and multiple intravenous administrations in healthy subjects. Antimicrob. Agents Chemother 36:552–557

    Article  CAS  Google Scholar 

  3. Van der Auwera P, Santella PJ (1993) Pharmacokinetics of cefepime: a review. Antimicrob. Agents Chemother 32:103–115

    Article  CAS  Google Scholar 

  4. Sprauten PF, Beringer PM, Louie SG, Synold TW, Gill MA (2003) Stability and antibacterial activity of cefepime during continuous infusion. Antimicrob. Agents Chemother 47:1991–1994

    Article  CAS  Google Scholar 

  5. Yayan J, Ghebremedhin B, Rasche K (2016) Cefepime shows good efficacy and no antibiotic resistance in pneumonia caused by Serratia marcescens and Proteus mirabilis - an observational study. BMC Pharmacol Toxicol 17. doi:10.1186/s40360-016-0056-y

  6. Legout L, Senneville E, Stern R, Yazdanpanah Y, Savage C, Roussel-Delvalez M, Rosele B, Migaud H, Mouton Y (2006) Treatment of bone and joint infections caused by gram-negative bacilli with a cefepime-fluoroquinolone combination. Clin Microbiol Infect 12:1030–1033

    Article  CAS  Google Scholar 

  7. Han SB, Hae BY, Lee JW, Lee DG, Chung NG, Jeong DC, Cho B, Kang JH, Kim HK (2013) Clinical characteristics and antimicrobial susceptibilities of viridans streptococcal bacteremia during febrile neutropenia in patients with hematologic malignancies: a comparison between adults and children. BMC Infect Dis 13. doi:10.1186/1471-2334-13-273

  8. Kumar VJ, Gupta PB, Kumar KSRP, Rao KVVP, Rao KR, Prasanna SJ, Sharma HK, Mukkanti K (2010) Identification and characterization ofnew degradation products of cefepime dihydrochloride monohydrate drug substance during stress stability studies. Anal Sci 26:1081–1086

    Article  CAS  Google Scholar 

  9. Shahid SK (2010) Cefepime: a review of its use in the treatment of serious bacterial infections. Clin Med Rev Therapeutics 2:1–10

    Article  Google Scholar 

  10. Viane E, Chanteux H, Servais H, Mingeout-Leclercq MP, Tulkens PM (2002) Comparative stability studies of Antipseudomonal β-lactams for potential administration through portable elastomeric pumps (home therapy for cystic fibrosis patients) and motor-operated syringes (intensive care units) Antimicrob. Agents Chemother 46:2327–2332

    Article  Google Scholar 

  11. Fubara JO, Notari RE (1998) Influence of pH, temperature and buffers on cefepime degradation kinetics and stability predictions in aqueous solutions. J Pharm Sci 87:1572–1576

    Article  CAS  Google Scholar 

  12. United States Pharmacopoeia, USP monograph: Cefepime for injection, USP 29 NF24, 410

  13. United States Pharmacopoeia, USP monograph: Cefepime hydrochloride, USP 29 NF24, 409

  14. Calahorra B, Campanero MA, Sadaba B, Azanza JR (1999) Rapid high-performance liquid chromatographic determination of cefepime in human plasma. Biomed Chromatogr 13:272–275

    Article  CAS  Google Scholar 

  15. Page N, Stevenson R, Powell M (2014) Analysis of N-methylpyrrolidine in cefepime hydrochloride by ion chromatography using suppressed conductivity detection with solid-phase extraction pre-treatment. Anal Methods 6:1248–1253

    Article  CAS  Google Scholar 

  16. Prasanna SJ, Sharma HK, Mukkanti K, Kumar VJ, Raja G, Sivakumaran M (2010) Validation of capillary electrophoresis method for determination of N-methylpyrrolidine in cefepime for injection. J Chromatogr Sci 48:830–834

    Article  CAS  Google Scholar 

  17. Fardjzadeh MA, Goushjuii L, Bashour Y (2010) A simple and rapid dispersive liquid-liquid microextraction method followed by GC-FID for determination of N-methylpyrrolidine in cefepime. J Sep Sci 33:3767–3773

    Article  Google Scholar 

  18. Smith RW, Cox LB, Yudin A, Reynolds JC, Powell M, Creaser CS (2015) Rapid determination of N-methylpyrrolidine in cefepime by combining direct infusion electrospray ionisation-time-of-flight mass spectrometry with field asymmetric waveform ion mobility spectrometry. Anal Methods 7:34–39

    Article  CAS  Google Scholar 

  19. Borsdorf H, Eiceman GA (2006) Ion mobility spectrometry: principles and applications. Appl Spectrosc Rev 41:323–375

    Article  CAS  Google Scholar 

  20. Armenta S, Alcala M, Blanco M, Gonzalez JM (2013) Ion mobility spectrometry for the simultaneous determination of diacetyl midecamycin and detergents in cleaning validation. J Pharm Biomed Anal 83:265–272

    Article  CAS  Google Scholar 

  21. Strege MA (2009) Total residue analysis of swabs by ion mobility spectrometry. Anal Chem 81:4576–4580

    Article  CAS  Google Scholar 

  22. Verkouteren J, Staymates JL (2011) Reliability of ion mobility spectrometry for qualitative analysis of complex, multicomponent illicit drug samples. Foren Sci Int 206:190–196

    Article  CAS  Google Scholar 

  23. O’Donnell RM, Sun X, Harrington PB (2008) Pharmaceutical applications of ion mobility spectrometry. Trends Anal Chem 27:44–53

    Article  Google Scholar 

  24. Harris GA, Graf S, Knochenmuss R, Fernandez FM (2012) Coupling laser ablation/desorption electrospray ionization to atmospheric pressure drift tube ion mobility spectrometry for the screening of antimalarial drug quality. Analyst 137:3039–3044

    Article  CAS  Google Scholar 

  25. Roscioli KM, Tufariello JA, Zhang X, Li SX, Goetz GH, Cheng G, Siems WF, Hill HH (2014) Desorption electrospray ionization (DESI) with atmospheric pressure ion mobility spectrometry for drug detection. Analyst 139:1740–1750

    Article  CAS  Google Scholar 

  26. Dunn JD, Gryniewicz-Ruzicka CM, Mans DJ, Mecker-Pogue LC, Kauffman JF, Westenberger BJ, Buhse LF (2012) Qualitative screening for adulterants in weight-loss supplements by ion mobility spectrometry. J Pharm Biomed Anal 71:18–26

    Article  CAS  Google Scholar 

  27. Eckers C, Laures AMF, Giles K, Major H, Pringle S (2007) Evaluating the utility of ion mobility separation in combination with high-pressure liquid chromatography/mass spectrometry to facilitate detection of trace impurities in formulated drug products. Rapid Commun Mass Spectrom 21:1255–1263

    Article  CAS  Google Scholar 

  28. Howdle MD, Eckers C, Laures AMF, Creaser CS (2010) The effect of drift gas on the separation of active pharmaceutical ingredients and impurities by ion mobility–mass spectrometry. Int J Mass Spectrom 298:72–77

    Article  CAS  Google Scholar 

  29. Howdle MD, Eckers C, Laures AMF, Creaser CS (2009) The use of shift reagents in ion mobility-mass spectrometry: studies on the complexation of an active pharmaceutical ingredient with polyethylene glycol excipients. J Am Soc Mass Spectrom 20:1–9

    Article  CAS  Google Scholar 

  30. Zamora D, Alcala M, Blanco M (2011) Determination of trace impurities in cosmetic intermediates by ion mobility spectrometry. Anal Chim Acta 708:69–74

    Article  CAS  Google Scholar 

  31. Puton J, Nousiainen M, Sillanpaa M (2008) Ion mobility sopectrometers with doped gases. Talanta 76:978–987

    Article  CAS  Google Scholar 

  32. Wang S, Dapeng Z, Zhang J, Li H, Liu H (2006) Rapid identification of Z/E cefepime dihydrochloride by high performance liquid chromatography / tandem time of flight mass spectrometry. Chin J Anal Chem 34(9):1278–1282

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Reynolds.

Electronic supplementary material

ESM 1

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reynolds, J.C., Giddings, L., Usen, I.C. et al. Rapid analysis of N-methylpyrrolidine in cefepime with thermal desorption ion mobility spectrometry. Int. J. Ion Mobil. Spec. 19, 209–217 (2016). https://doi.org/10.1007/s12127-016-0210-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-016-0210-7

Keywords

Navigation