Skip to main content
Log in

Bradbury-Nielsen vs. Field switching shutters for high resolution drift tube ion mobility spectrometers

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

A key component in the design of every drift tube ion mobility spectrometer (IMS) is the ion shutter which controls the injection of ions into the drift tube. Especially, compact drift tube IMS require very short injection pulses to achieve high resolution and therefore require fast ion shutters. Thus, it is important to find an ion shutter principle that can be readily scaled towards these short injection widths without causing major non-idealities in the injection process, such as drift field inhomogeneities, ion loss and ion discrimination by mobility. In this paper, we compare different ion shutter principles, foremost the Bradbury-Nielsen gate and a field switching design. It is shown through theoretical considerations and field simulations that the Bradbury-Nielsen shutter is more universally applicable and typically less complex for long injections widths but field inhomogeneities associated with its operating principle impede the scaling process. Thus, the currently less used field switching shutters will become the superior principle when very short injection widths are required, as this shutter principle allows for single digit microsecond widths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. A. Eiceman, Z. Karpas and H. H. Hill Jr., Ion Mobility Spectrometry, 3nd Edition, CRC Press, 2013

  2. H. Borsdorf and G. A. Eiceman, Appl. Spectrosc. Rev., pp. 323–375, 2006 (41).

  3. Helko Borsdorf, Thomas Mayer, Mashaalah Zarejousheghani and Gary A. Eiceman, Appl. Spectrosc. Rev., pp. 472–521, 2011 (46).

  4. M. Westhoff, P. Litterst, S. Maddula, B. Bödeker and J. I. Baumbach, Int. J. Ion Mobil. Spec., pp. 139–149, 2011 (14).

  5. N. Budimir, D. J. Weston and C. S. Creaser, Analyst, pp. 34–40, 2007 (132).

  6. A. T. Kirk, M. Allers, P. Cochems, J. Langejuergen and S. Zimmermann, Analyst, pp. 5200–5207, 2013 (138).

  7. C. B. Hariharan, L. Seifert, J. I. Baumbach and W. Vautz, Int. J. Ion Mobil. Spec., pp. 31–38, 2011 (14).

  8. D. Yongzhai, W. Weiguo and L. Haiyang, Anal. Chem., pp. 1725–1731, 2011 (84).

  9. M. Tabrizchi and H. R. Shamlouei, Int. J. Mass Spectrom., pp. 67–72, 2010 (291).

  10. F. K. Tadjimukhamedov, J. Puton, J. A. Stone and G. A. Eiceman, Rev. Sci. Instrum., p. 103103, 2009 (80).

  11. N. E. Bradbury and R. A. Nielsen, Phys. Rev., pp. 388–393, 1936 (49).

  12. J. Puton, A. Knap and S. Boguslaw, Sens. Actuator. B-Chem., pp. 116–121, 2008 (135).

  13. C. W. Stoermer, S. Gilb, J. Friedrich, D. Schooss and M. M. Kappes, Rev. Sci. Instrum., pp. 1661–1664, 1998 (69).

  14. J. R. Kimmel, F. Engelke and R. N. Zare, Rev. Sci. Instrum., pp. 4354–4357, 2001 (72).

  15. O. K. Yoon, I. A. Zuleta, M. D. Robbins, G. K. Barbula and R. N. Zare, J. Am. Soc. Mass. Spec., pp. 1901–1908, 2007 (18).

  16. I. A. Zuleta, G. K. Barbula, M. D. Robbins, O. K. Yoon and R. N. Zare, Anal. Chem., pp. 9160–9165, 2007 (79).

  17. X. Zhang, R. Knochenmuss, W. F. Siems, W. Liu, S. Graf and H. H. Hill Jr., Anal. Chem., pp. 1661–1670, 2014 (86).

  18. W. F. Siems, C. Wu, E. E. Tarver, H. H. Hill Jr., P. R. Larsen and D. G. McMinn, Anal. Chem., pp. 4195–4201, 1994 (66).

  19. A. B. Kanu, M. M. Gribb and H. H. Hill Jr., Anal. Chem., pp. 6610–6619, 2008 (80).

  20. Jenkins A (1993) US Patent 5:200,614

    Google Scholar 

  21. J. W. Leonhardt, W. Rohrbeck and H. Bensch, Int. J. Ion Mobil. Spec., pp. 43–49, 2000 (1)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansgar T. Kirk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirk, A.T., Zimmermann, S. Bradbury-Nielsen vs. Field switching shutters for high resolution drift tube ion mobility spectrometers. Int. J. Ion Mobil. Spec. 17, 131–137 (2014). https://doi.org/10.1007/s12127-014-0153-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-014-0153-9

Keywords

Navigation