Abstract
Collision cross sections (CCS) have been measured for three salen ligands, and their complexes with copper and zinc using travelling-wave ion mobility-mass spectrometry (TWIMS) and drift tube ion mobility-mass spectrometry (DTIMS), allowing a comparative size evaluation of the ligands and complexes. CCS measurements using TWIMS were determined using peptide and TAAH calibration standards. TWIMS measurements gave significantly larger CCS than DTIMS in helium, by 9 % for TAAH standards and 3 % for peptide standards, indicating that the choice of calibration standards is important in ensuring the accuracy of TWIMS-derived CCS measurements. Repeatability data for TWIMS was obtained for inter- and intra-day studies with mean RSDs of 1.1 % and 0.7 %, respectively. The CCS data obtained from IM-MS measurements are compared to CCS values obtained via the projection approximation, the exact hard spheres method and the trajectory method from X-ray coordinates and modelled structures using density functional theory (DFT) based methods.
This is a preview of subscription content, access via your institution.



References
Creaser CS, Bramwell CJ, Noreen S, Hill CA, Thomas CL (2004) Analyst 129:984–994
Giles K, Pringle SD, Worthington KR, Little D, Wildgoose JL, Bateman RH (2004) Rapid Commun Mass Spectrom 18:2401–2414
Scarff CA, Snelling JR, Knust MM, Wilkins CL, Scrivens JH (2012) J Am Chem Soc 134:9193–9198
Wassvik C, Mortishire-Smith RJ, Tresadern G, Campuzano I, Claereboudt J (2011) Rapid Commun Mass Spectrom 25:3497–3503
Campuzano I, Bush MF, Robinson CV, Beumont C, Richardson K, Kim H, Kim HI (2012) Anal Chem 84:1026–1033
Scarff CA, Thalassinos K, Hilton GR, Scrivens JH (2008) Rapid Commun Mass Spectrom 22:3297–3304
Thalassinos K, Grabenaur M, Slade SE, Hilton GR, Bowers MT, Scrivens JH (2009) Anal Chem 81:248–254
Salbo R, Bush MF, Naver H, Campuzano I, Robinson CV, Pettersson I, Jørgensen TJD, Haselmann KF (2012) Rapid Commun Mass Spectrom 26:1181–1193
Michaelevski I, Eisenstein M, Sharon M (2010) Anal Chem 82:9484–9491
Atmanene C, Petiot-Bécard S, Zeyer D, Dorsselaer AV, Hannah VV, Sanlier-Cianférani S (2012) Anal Chem 84:4703–4710
Knapman TW, Berryman JT, Campuzano I, Harris SA, Ashcroft AE (2010) Int J Mass Spectrom 298:17–23
Williams JP, Bugarcic T, Habtemariam A, Giles K, Campuzano I, Rodger PM, Sadler PJ (2009) J Am Soc Mass Spectrom 20:1119–1122
Williams JP, Lough JA, Campuzano I, Richardson K, Sadler PJ (2009) Rapid Commun Mass Spectrom 23:3563–3569
Wyttenbach T, Batka JJ, Gidden J, Bowers MT (1999) Int J Mass Spectrom 193:143–152
Wyttenbach T, Witt M, Bowers MT (2000) J Am Chem Soc 122:3458–3464
Clowers BH, Hill HH Jr (2006) J Mass Spectrom 41:339–351
Moision RM, Armentrout PB (2006) J Phys Chem A 2:3933–3946
Taraszka JA, Li J, Clemmer DE (2000) J Phys Chem B 104:4545–4551
Leavell MD, Gaucher SP, Leary JA, Taraszka JA, Clemmer DE (2002) J Am Soc Mass Spectrom 13:284–293
Baker ES, Manard MJ, Gidden J, Bowers MT (2005) J Phys Chem B 109:4808–4810
Wyttenbach T, Liu DF, Bowers MT (2008) J Am Chem Soc 130:5993–6000
Berezovskaya Y, Armstrong CT, Boyle AL, Porrini M, Woolfson DN, Barran PE (2011) Chem Commun 47:412–414
Chepelin O, Ujma J, Barran PE, Lusby PJ (2012) Angew Chem Int 51:4194–4197
Gidden J, Bowers MT, Jackson AT, Scrivens JH (2002) J Am Chem Soc 13:499–505
Smith DP, Knapman TW, Campuzano I, Malham RW, Berryman JT, Radford SE, Ashcroft AE (2009) Eur J Mass Spectrom 15:113–130
McCullough BJ, Kalapothakis J, Eastwood H, Kemper P, MacMillan D, Taylor K, Dorin J, Barran PE (2008) Anal Chem 80:6336–6344
Von Helden G, Hsu MT, Gotts N, Bowers MT (1993) J Phys Chem 97:8182–8192
Shvartsburg AA, Jarrold MF (1996) Chem Phys Lett 261:86–91
Mesleh MF, Hunter JM, Shvartsburg AA, Schatz GC, Jarrold MF (1996) J Phys Chem 100:16082–16086
Siu C, Guo Y, Saminathan IS, Hopkinson AC, Siu KWM (2010) J Phys Chem 114:1204–1212
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian, Inc, Wallingford
Valentine SJ, Conterman AE, Clemmer DE (1999) J Am Soc Mass Spectrom 10:1188–1211
Jurneczko EJ, Kalapothakis J, Campuzano IDG, Morris M, Barran PE (2012) Anal Chem 84:8524–8531
Morsa D, Gabelica V, De Pauw E (2011) Anal Chem 83:5775–5782
Acknowledgments
We thank Loughborough University for the award of a studentship to V.E.W and AstraZeneca for financial support. Research support from the ICIQ Foundation, Spanish Ministerio de Economia y Competitividad (MINECO grant CTQ2011-29054-C02-02) and the Generalitat de Catalunya (2009SGR-00259) is gratefully acknowledged. Waters and the BBSRC are acknowledged for the award of a strategic CASE studentship to E.J. The BMSS (British Mass Spectrometry Society) is thanked for proving the funds for a pipette puller enabling the nanospray experiments on the DTIMS.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
(PDF 146 kb)
Rights and permissions
About this article
Cite this article
Wright, V.E., Castro-Gómez, F., Jurneczko, E. et al. Structural studies of metal ligand complexes by ion mobility-mass spectrometry. Int. J. Ion Mobil. Spec. 16, 61–67 (2013). https://doi.org/10.1007/s12127-013-0122-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12127-013-0122-8