Evaluation of micro- versus nano-electrospray ionization for ambient pressure ion mobility spectrometry

Original Research

Abstract

The comparison of nanospray and microspray ionizations for detecting mixtures of compounds by ion mobility spectrometry has been investigated for sensitivity, ion transmission through a drift tube, and ion suppression effects when used as an ionization source for ambient pressure ion mobility spectrometry (IMS). Several articles have demonstrated that nano-electrospray ionization mass spectrometry (n-ESI-MS) has improved sensitivity, provides less background noise, and lower limits of detection than micro-electrospray ionization (μ-ESI) for IMS. Most importantly, data from n-ESI-MS is concentration-sensitive. Our laboratory previously published an article that observed a striking result when μ-ESI-IMS was investigated for a single compound in the positive ion mode. The data reported was mass-sensitive. In this new investigation, we have investigated mixtures, and experiments were designed to evaluate the effect of sensitivity, ion transmission and ion suppressions in μ-ESI-IMS and n-ESI-IMS. At an electrospray flow rate in the μL min−1 range, compounds with higher proton affinities responded best while at the nanospray flow rates of nL min−1, relative responses were more equal. This study observed that a decreased ESI flow rate resulted in a decreased ion signal. These trends demonstrated less sensitivity for ESI-IMS at reduced flow rates but suggest better quantification. At higher flow rates, relative ionization efficiencies were still uniform for all the components studied individually and in mixtures and sensitivity improved by about 78%. Concentration studies showed that at high concentrations, ion detection efficiencies were uniform at about 33% for all compounds studied individually and in mixtures. At low concentrations, the detection efficiency varied from 31% to 86%, depending on the proton affinity of the component in the mixture. Ion transmission through the IMS tube measured with a segmented Faraday detector that was incorporated into the IMS design indicated that most of the ion current for mixtures was transported through the IMS tube with a radius of less than 18 mm for both positive and negative ion modes.

Keywords

Electrospray ionization Ion mobility spectrometry Segmented faraday detector Explosives Drugs 

References

  1. 1.
    Dole M, Mack LL, Hines RL, Mobley RC, Ferguson LD, Alice MB (1968) J Chem Phys 49:2240–2249CrossRefGoogle Scholar
  2. 2.
    Mack LL, Kralik P, Rheude A, Dole M (1970) J Chem Phys 52:4977–4986CrossRefGoogle Scholar
  3. 3.
    Clegg GA, Dole M (1971) Biopolymers 10:821–826CrossRefGoogle Scholar
  4. 4.
    Teer D, Dole M (1975) J Poly Phys 13:985–995CrossRefGoogle Scholar
  5. 5.
    Dole M, Cox HL Jr, Gieniec J (1973) Adv Chem Ser No 125:73–78CrossRefGoogle Scholar
  6. 6.
    Yamashita M, Fenn JB (1984) J Phys Chem 88:4451–4459CrossRefGoogle Scholar
  7. 7.
    Yamashita M, Fenn JB (1984) J Phys Chem 88:4471–4475Google Scholar
  8. 8.
    Hill HH Jr (1987) In: Society of western analytical professors (SWAP): Utah State University, Jan. 29–Feb. 1Google Scholar
  9. 9.
    Shumate C, Hill HH Jr (1987) In: 42nd northwest regional meeting of the American Chemical Society: Bellingham, WA, JuneGoogle Scholar
  10. 10.
    Hill HH Jr (1987) In: Symposium on accuracy in trace analysis; National Bureau of Standards: Gaithersburg, MD, September 28–October 1Google Scholar
  11. 11.
    Hill HH Jr, Eatherton RL (1988) J Res Nat Bur Stand 93:425–426Google Scholar
  12. 12.
    Shumate CB, Hill HH Jr (1989) Anal Chem 61:601–606CrossRefGoogle Scholar
  13. 13.
    Hill HH Jr, Siems WF, St Louis RH, McMinn DG (1990) Anal Chem 62:1201A–1209ACrossRefGoogle Scholar
  14. 14.
    McMinn DG, Kinzer JA, Shumate CB, Siems WF, Hill HH Jr (1990) J Microcol Sep 2:188–192CrossRefGoogle Scholar
  15. 15.
    St Louis RH, Hill HH (1990) Crit Rev Anal Chem 21:321–355CrossRefGoogle Scholar
  16. 16.
    Shumate CB, Hill HH Jr (1992) In: Breen J, Dellarco M (eds) Pollution prevention and process analytical chemistry. ACS Books, WashingtonGoogle Scholar
  17. 17.
    Hill HH Jr, St Louis RH, Morrissay MA, Shumate CB, Siems W, McMinn DG (1992) J High Res Chromatogr 15:417–422CrossRefGoogle Scholar
  18. 18.
    Lee ML, Collins DC (2003) Atmospheric pressure ionization ion mobility spectrometry, patent # 6,586,732, July 1Google Scholar
  19. 19.
    Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Science 246:64–71CrossRefGoogle Scholar
  20. 20.
    Whitehouse CM, Dreyer RN, Yamashita M, Fenn JB (1985) Anal Chem 57:675–679CrossRefGoogle Scholar
  21. 21.
    Smith RD, Loo JA, Edmonds CG, Barinaga CJ, Udseth HR (1990) J Chromatogr 516:157–165CrossRefGoogle Scholar
  22. 22.
    Hofstadler SA, Swanek FD, Gale DC, Ewing AG, Smith RD (1995) Anal Chem 67:1477–1480CrossRefGoogle Scholar
  23. 23.
    Wang Q, Yue B, Lee ML (2004) J Chromatogr A 1025:139–146CrossRefGoogle Scholar
  24. 24.
    Collins DC, Lee ML, Fres J (2001) Anal Chem 369:225–233CrossRefGoogle Scholar
  25. 25.
    Wittmer D, Chen YH, Luckenbill BK, Hill HH Jr (1994) Anal Chem 66:2348–2355CrossRefGoogle Scholar
  26. 26.
    Takáts Z, Wiseman JM, Gologan B, Cooks RG (2004) Science 306:471–476CrossRefGoogle Scholar
  27. 27.
    Fligge TA, Bruns K, Przybylski MJ (1998) J Chromatogr B 706:91–100CrossRefGoogle Scholar
  28. 28.
    Banks FJ Jr, Shen S, Whitehouse CM, Fenn JB (1994) Anal Chem 66:406–414CrossRefGoogle Scholar
  29. 29.
    Mann M, Meng CK, Fenn JB (1989) Anal Chem 61:1702–1708CrossRefGoogle Scholar
  30. 30.
    Nohmi T, Fenn JB (1992) J Am Chem Soc 114:3241–3246CrossRefGoogle Scholar
  31. 31.
    Gangl ET, Annan M, Spooner N, Vouros P (2001) Anal Chem 73:5635–5644CrossRefGoogle Scholar
  32. 32.
    Wilm M, Mann M (1996) Anal Chem 68:1–8CrossRefGoogle Scholar
  33. 33.
    Fligge TA, Kast J, Bruns K, Przybylski MJ (1999) J Am Soc Mass Spectrom 10:112–118CrossRefGoogle Scholar
  34. 34.
    Gale DC, Smith RD (1993) Rapid Commun Mass Spectrom 7:1017–1021CrossRefGoogle Scholar
  35. 35.
    Andren PE, Emmett MR, Caprioli RM (1994) J Am Soc Mass Spectrom 5:867–869CrossRefGoogle Scholar
  36. 36.
    Valaskovic GA, Kelleher NL, McLafferty FW (1996) Science 273:1199–1202CrossRefGoogle Scholar
  37. 37.
    Wilm MS, Mann M (1994) Int J Mass Spectrom Ion Processes 136:167–180CrossRefGoogle Scholar
  38. 38.
    Juraschek R, Dulcks T, Karas M (1999) J Am Soc Mass Spectrom 10:300–308CrossRefGoogle Scholar
  39. 39.
    Schmidt A, Karas M, Dulcks T (2003) J Am Soc Mass Spectrom 14:492–500CrossRefGoogle Scholar
  40. 40.
    Smith RD, Shen Y, Tang K (2004) Acc Chem Res 37:269–278CrossRefGoogle Scholar
  41. 41.
    Kim T, Udseth HR, Smith RD (2000) Anal Chem 72:5014–5019CrossRefGoogle Scholar
  42. 42.
    Wu S, Zhang K, Kaiser NK, Bruce JE, Prior DC, Anderson GA (2006) J Am Soc Mass Spectrom 17:772–779CrossRefGoogle Scholar
  43. 43.
    Wu C, Siems WF, Asbury GR, Hill HH Jr (1998) Anal Chem 70:4929–4938CrossRefGoogle Scholar
  44. 44.
    Siems WF, Wu C, Tarver EE, Hill HH Jr, Larsen PR, McMinn DG (1994) Anal Chem 66:4195–4201CrossRefGoogle Scholar
  45. 45.
    Kanu AB, Gribb MM, Hill HH Jr (2008) Anal Chem 80:6610–6619CrossRefGoogle Scholar
  46. 46.
    Tang X, Bruce J, Hill HH Jr (2006) Anal Chem 78:7751–7760CrossRefGoogle Scholar
  47. 47.
    Gieniec ML, Cox J Jr, Teer D, Dole M (1972) Dallas, TX, June 4–9Google Scholar
  48. 48.
    Smith RD, Loo JA, Ogorzalek RR, Busman M, Udseth HR (1991) Mass Spectrom Reviews 10:359–452CrossRefGoogle Scholar
  49. 49.
    Dwivedi P, Matz LM, Atkinson DA, Hill HH Jr (2004) Analyst 129:139–144CrossRefGoogle Scholar
  50. 50.
    Steiner WE, Clowers BH, Haigh PH, Hill HH (2003) Anal Chem 75:6068–6076CrossRefGoogle Scholar
  51. 51.
    Bramwell CJ, Colgrave ML, Creaser CS, Dennis R (2002) Analyst 127:1467–1470CrossRefGoogle Scholar
  52. 52.
    Colgrave ML, Bramwell CJ, Creaser CS (2003) Int J Mass Spectrom 229:209–216CrossRefGoogle Scholar
  53. 53.
    Eatherton RL (1987) Development in ion mobility detection for capillary chromatography, PhD Thesis, Washington State UniversityGoogle Scholar
  54. 54.
    Kanu AB, Hill HH Jr, Gribb MM, Walters RN (2007) J Environ Monit 9:51–60CrossRefGoogle Scholar
  55. 55.
    Smith RD, Loo JA, Edmonds CG, Barinaga CJ, Udseth HR (1990) Anal Chem 62:882–899CrossRefGoogle Scholar
  56. 56.
    Cech NB, Enke CG (2001) Mass Spectrom Reviews 20:362–387CrossRefGoogle Scholar
  57. 57.
    Shumate C, St Louis RH, Hill HH Jr (1986) J Chromatogr 373:141–173CrossRefGoogle Scholar
  58. 58.
    Asbury GR, Hill HH Jr (1999) Int J Ion Mobil Spectrom 2:1–8Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of ChemistryLone Star College - CyFairCypressUSA
  2. 2.Department of ChemistryWashington State UniversityPullmanUSA

Personalised recommendations