Skip to main content
Log in

Formal Modeling Techniques for Ambient Assisted Living

  • Published:
Ageing International Aims and scope Submit manuscript

Abstract

In the development of systems of ambient assisted living (AAL), formalized models and analysis techniques can provide a ground that makes development amenable to a systematic approach. We consider the following formal modeling tools and techniques: fault trees, evidential reasoning, evidential ontology networks, temporal logic, hidden Markov models and partially observable Markov models. We review them in the perspective of their potential in the realm of AAL, recalling the general traits and potential of each of them, and highlighting how this can be concretely deployed within the AAL realm. To this end, we present a number of scenarios providing insight on how each technique can match the needs of different types of problem in the application domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Albrecht, D. W., Zukerman, I., & Nicholson, A. N. (1998). Bayesian models for keyhole plan recognition in an adventure game. User Modeling and User-Adapted Interaction, 8(1), 5–47.

    Article  Google Scholar 

  • Aldrich, F. (2003). Smart homes: past, present and future. In R. Harper (Ed.), Inside the smart home (pp. 17–39). London: Springer.

    Chapter  Google Scholar 

  • Andréu, J., Viúdez, J., & Holgado, J. (2008). An ambient assisted-living architecture based on wireless sensor networks. Proceedings of the 3rd Symposium of Ubiquitous Computing and Ambient Intelligence, 239–248.

  • Atallah, L., & Yang, G. (2009). The use of pervasive sensing for behaviour profiling—a survey. Pervasive and Mobile Computing, 5(5), 447–464.

    Article  Google Scholar 

  • Baker, C. R., Armijo, K., Belka, S., Benhabib, M., Bhargava, V., Burkhart, N., et al. (2007). Wireless sensor networks for home health care. Proceedings of the 21st International Conference on Advanced Information Networking and Applications Workshops, 2, 832–837.

    Article  Google Scholar 

  • Boger, J., Poupart, P., Hoey, J., Boutilier, C., Fernie, G., & Mihailidis, A. (2005). A decision-theoretic approach to task assistance for persons with dementia. Proceedings of IEEE International Joint Conference on Artificial Intelligence, 1293–1299.

  • Boreczky, J. S., & Wilcox, L. D. (1998). A hidden Markov model framework for video segmentation using audio and image features. Proceedings of the 23 rd International Conference on Acoustics, Speech and Signal Processing, 6, 3741–3744.

    Google Scholar 

  • Brdiczka, O., Langet, M., Maisonnasse, J., & Crowley, J. L. (2008). Detecting human behavior models from multimodal observation in a smart home. IEEE Transactions on Automation Science and Engineering, 5(4).

  • Carnevali, L., Ridi, L., & Vicario, E. (2009). Stochastic fault trees for cross-layer power management of WSN monitoring systems. Proceedings of the 14 th IEEE International Conference on Emerging Technologies and Factory Automation, 774–781.

  • Cassandra, A. R. (1998). A survey of POMDP applications. Working Notes of AAAI 1998 Fall Symposium on Planning with Partially Observable Markov Decision Processes, 17–24.

  • Chen, L., Nugent, C., Mulvenna, M., Finaly, D., Hong, X., & Poland, M. (2008). Using event calculus for behaviour reasoning and assistance in a smart home. In S. Helal, S. Mitra, J. Wong, C. K. Chang, & M. Mokhtari (Eds.), Smart homes and health telematics (pp. 81–89). Berlin: Springer.

    Chapter  Google Scholar 

  • Clarke, E. M., Emerson, E. A., & Sistla, A. P. (1986). Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Transactions on Programming Languages and Systems, 8(2), 244–263.

    Article  Google Scholar 

  • Cook, D. J., & Das, S. K. (2007). How smart are our environments? An updated look at the state of the art. Pervasive and Mobile Computing, 3(2), 53–73.

    Article  Google Scholar 

  • Corscience (2010). http://www.corscience.de/en/medical-engineering/products-systems/telemedicine.html. Cited May 2010.

  • Culpepper, B. J., Dung, L., & Moh, M. (2004). Design and analysis of hybrid indirect transmissions (HIT) for data gathering in wireless MicroSensor networks. ACM Mobile Computing and Communications Review, 8(1), 61–83.

    Article  Google Scholar 

  • Das, S. K. & Cook, D. J. (2004). Health monitoring in an agent-based smart home by activity prediction. Proceeding of the 2nd International Conference on Smart Homes and Health Telematics, 3–14.

  • Das, S. K., Cook, D. J., Battacharya, A., Heierman, E. O., & Tze-Yun, L. (2002). The role of prediction algorithms in the MavHome smart home architecture. IEEE Wireless Communications, 9(6), 77–84.

    Article  Google Scholar 

  • Das, S. K., Roy, N., & Roy, A. (2006). Context-aware resource management in multi-inhabitant smart homes: a framework based on nash h-learning. Pervasive and Mobile Computing, 2(4), 372–404.

    Article  Google Scholar 

  • Dempster, A. P. (1968). A generalization of bayesian inference. In R. R. Yager & L. Liu (Eds.), Classic works of the Dempster-Shafer theory of belief functions. Berlin: Springer.

    Google Scholar 

  • Duong, T., Bui, H., Phung, D., & Venkatesh, S., (2005). Activity recognition and abnormality detection with the switching hidden semi-markov model. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 838–845.

  • Eddy, S. R. (1998). Profile hidden Markov models. Bioinformatics, 14(9), 755–763.

    Article  Google Scholar 

  • Ellis, H., Jiang, M., & Corotis, R. B. (1995). Inspection, maintenance, and repair with partial observability. Journal of Infrastructure Systems, 1(2), 92–99.

    Article  Google Scholar 

  • Emerson, E. A. (1990). Temporal and modal logic. In J. van Leeuwen (Ed.), Handbook of theoretical computer science (pp. 995–1072). Cambridge: Elsevier and MIT.

    Google Scholar 

  • Finkenzeller, K., & Waddington, R. (2003). RFID handbook: fundamentals and applications in contactless smart cards and identification. New York: Wiley.

    Google Scholar 

  • Helal, S., King, J., & Jansen, E. (2005). The Gator tech smart house: a programmable pervasive space. Computer, 38(3), 50–60.

    Article  Google Scholar 

  • Helmer, G., Wong, J., Slagell, M., Honavar, V., Miller, L., & Lutz, R. (2002). A software fault tree approach to requirements analysis of an intrusion detection system. Requirements Engineering, 7(4), 207–220.

    Article  Google Scholar 

  • Herzog, A., & Shahmehri, N. (2001). Towards secure e-services: risk analysis of a home automation service. Proceedings of the 6th Nordic Workshop on Secure IT Systems, 18–26.

  • Hoey, J., Poupart, P., Boutilier C., & Mihalidis, A. (2005). Semi-supervised learning of a POMDP model of patient-caregiver interactions. Proceedings of IJCAI Workshop on Modeling Others from Observations, 101–110.

  • Hong, X. & Nugent, C. (2009). Partitioning time series sensor data for activity recognition. Proceedings of the 9th International Conference on Information Technology and Applications in Biomedicine, 1–4.

  • Hong, X., Nugent, C., Mulvenna, M., McClean, S., Scotney, B., & Devlin, S. (2008). Assessment of the impact of sensor failure in the recognition of activities of daily living. In S. Helal, S. Mitra, J. Wong, C. K. Chang, & M. Mokhtari (Eds.), Smart homes and health telematics. Berlin: Springer.

    Google Scholar 

  • Hong, X., Nugent, C., Mulvenna, M., McClean, S., Scotney, B., & Devlin, S. (2009). Evidential fusion of sensor data for activity recognition in smart homes. Pervasive and Mobile Computing, 5(3), 236–252.

    Article  Google Scholar 

  • Instromedix (2010). http://www.instromedix.com/HealtheKit.htm. Cited February 2010.

  • Jones, R. W., Lowe, A., & Harrison, M. J. (2002). A framework for intelligent medical diagnosis using the theory of evidence. Knowledge-Based Systems, 15(1–2), 77–84.

    Article  Google Scholar 

  • Katz, S. (1983). Assessing self-maintenance: activities of daily living, mobility, and instrumental activities of daily living. Journal of the American Geriatrics Society, 31(12), 721–727.

    Google Scholar 

  • Korhonen, I., Parkka, J., & Van Gils, M. (2003). Health monitoring in the home of the future. IEEE Engineering in Medicine and Biology Magazine, 22(3), 66–73.

    Article  Google Scholar 

  • Lovejoy, W. S. (1991). A survey of algorithmic methods for partially observed Markov decision processes. Annals of Operations Research, 28(1), 47–65.

    Article  Google Scholar 

  • Maedche, A., & Staab, S. (2001). Ontology learning for the semantic web. IEEE Intelligent Systems, 16(2), 72–79.

    Article  Google Scholar 

  • Malhotra, M., & Trivedi, K. S. (1994). Power-hierarchy of dependability-model types. IEEE Transactions on Reliability, 43(3), 493–502.

    Article  Google Scholar 

  • Manna, Z., & Pnueli, A. (1992). The temporal logic of reactive and concurrent systems: Specification. Berlin: Springer-Verlag.

    Google Scholar 

  • Marx, D. A., & Slonim, A. D. (2003). Assessing patient safety risk before the injury occurs: an introduction to sociotechnical probabilistic risk modelling in health care. Quality and Safety in Health Care, 12(Suppl II), ii33–ii38.

    Google Scholar 

  • Milenkovic, A., Otto, C., & Jovanov, C. (2006). Wireless sensor networks for personal health monitoring: Issues and an implementation. Computer Communications, 29(13–14), 2521–2533.

    Article  Google Scholar 

  • Modayil, J., Bai, T., & Kautz, H. (2008). Improving the recognition of interleaved activities. Proceedings of the 10th international conference on Ubiquitous computing, 40–43.

  • Monahan, G. E. (1982). A survey of partially observable Markov decision processes: theory, models, and algorithms. Management Science, 28(1), 1–16.

    Article  Google Scholar 

  • Nehmer, J., Becker, M., Karshmer, A., & Lamm R. (2006). Living assistance systems: an ambient intelligence approach. Proceedings of the 28th international conference on Software Engineering, 43–50.

  • Norris, J. R. (1998). Markov chains. Cambridge: Cambridge Univ. Pr.

    Google Scholar 

  • Noury, N., Virone, G., & Creuzet, T. (2002). The health integrated smart home information system (HIS2): rules based system for the localization of a human. Proceedings of the 2nd Annual International IEEE-EMB Special Topic Conference on Microtechnologies in Medicine & Biology, 2–4.

  • Nugent, C. D., Davies, R. J., Donnelly, M. P., Hallberg, J., Hariz, M., Craig, D., et al. (2008). The development of personalised cognitive prosthetics. Proceedings of 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 787–790.

  • Numetrex (2010). http://www.numetrex.com/. Cited May 2010.

  • Omron Healthcare (2010). http://www.omronhealthcare.com/. Cited May 2010.

  • Paggetti, C., & Tamburini, E. (2005). Remote management of integrated home care services: the DGHome platform. Proceedings of the 3 rd International Conference on Smart homes and health Telematics, 298–301.

  • Paradiso, R., Loriga, G., & Taccini, N. (2005). A wearable health care system based on knitted integrated sensors. IEEE Transactions on Information Technology in Biomedicine, 9(3), 337–344.

    Article  Google Scholar 

  • Patterson, D. J., Liao, L., Fox, D., & Kautz, H. (2003). Inferring high-level behaviour from low-level sensors. Proceedings of ACM International Conference on Ubiquitous Computing, 73-89.

  • Philipose, M., Fishkin, K. P., Perkowitz, M., Patterson, D. J., Fox, D., Kautz, H., et al. (2004). Inferring activities from interactions with objects. IEEE Pervasive Computing, 3(4), 50–57.

    Article  Google Scholar 

  • Pineau, J., Montemerlo, M., Pollack, M., Roy, N., & Thrun, S. (2003). Towards robotic assistants in nursing homes: Challenges and results. Robotics and Autonomous Systems, 42(3–4), 271–281.

    Article  Google Scholar 

  • Puterman, M. L. (1994). Markov decision processes: Discrete stochastic dynamic programming. New York: Wiley.

    Book  Google Scholar 

  • Rabiner, L. R. (1990). A tutorial on hidden Markov models and selected applications in speech recognition. Readings in Speech Recognition, 53(3), 267–296.

    Google Scholar 

  • Rabiner, L. R., & Juang, B. H. (1986). Introduction to hidden Markov models. IEEE ASSP MAG, 3(1), 4–16.

    Article  Google Scholar 

  • Rahal, Y., Mabilleau, P., & Pigot, H. (2007). Bayesian filtering and anonymous sensors for localization in a smart home. Proceedings of the 21st International Conference on Advanced Information Networking and Applications Workshops, 793–797.

  • Rao, S. P., & Cook, D. J. (2004). Predicting inhabitant action using action and task models with application to smart homes. International Journal on Artificial Intelligence Tools, 13(1), 81–100.

    Article  Google Scholar 

  • Rugnone, A., Poli, F., Vicario, E., Nugent, C. D., Tamburini, E., & Paggetti, C. (2007). A visual editor to support the use of temporal logic for ADL monitoring. In T. Okadome, T. Yamazaki, & M. Makhtari (Eds.), Pervasive computing for quality of life enhancement (pp. 217–225). Berlin: Springer.

    Chapter  Google Scholar 

  • Sanchez, D., Tentori, M., & Favela, J. (2007). Hidden markov models for activity recognition in ambient intelligence environments. Proceedings of the 8th Mexican International Conference on Current Trends in Computer Science, 0, 33–40.

    Article  Google Scholar 

  • Schwaibold, M., Gmelin, M., von Wagner, G., Schöchlin, J., & Bolz, A. (2002). Key factors for personal health monitoring and diagnosis devices. In H. B. Bludau & A. Koop (Eds.), Lecture notes in informatics: Mobile computing in medicine. Bonn: Köllen Verlag.

    Google Scholar 

  • Shafer, G. (1976). A mathematical theory of evidence. New York: Princeton Univ. Press.

    Google Scholar 

  • Singla, G., Cook, D. J., & Schmitter-Edgecombe, M. (2008). Incorporating temporal reasoning into activity recognition for smart home residents. Proceedings of the AAAI Workshop on Spatial and Temporal Reasoning.

  • Soubaras, H. (2010). On evidential markov chains. In B. Bouchon-Meunier, L. Magdalena, M. Ojeda-Aciego, J.-L. Verdegay, & R. R. Yager (Eds.), Foundations of reasoning under uncertainty (pp. 247–264). Berlin: Springer.

    Chapter  Google Scholar 

  • Srivastava, R. P., & Mock, T. J. (2002). Applications of belief functions in business decisions: a Review. Information Systems Frontiers, 5(4), 359–378.

    Article  Google Scholar 

  • Stafeflow 7.5 Mathworks. http://www.mathworks.com/products/stateflow/ (accessed 2010)

  • Starner, T., & Pentland, A. (1995). Visual recognition of American sign language using hidden Markov models. International Workshop on Automatic Face and Gesture Recognition, 189–194.

  • Strat, T. M. (1987). The generation of explanations within evidential reasoning systems. Proceedings of the 10th international joint conference on Artificial intelligence, 2, 1097–1104.

    Google Scholar 

  • Sun Spot World (2010). http://www.sunspotworld.com/. Cited January 2010.

  • Ten Veldhuis, J., Clemens, F., & van Gelder, P. (2009). Fault tree analysis for urban flooding. Water science and technology: a journal of the International Association on Water Pollution Research, 59(8), 1621–1629.

    Google Scholar 

  • Van den Broek, G., Cavallo, F., Odetti, L., & Wehrmann, C. (2009). Ambient assisted living roadmap. Berlin: VDI/VDE-IT.

    Google Scholar 

  • Van Kasteren, T., Noulas, A., Englebienne, G., Kröse, B. (2008). Accurate activity recognition in a home setting. Proceedings of the 10th international conference on Ubiquitous computing, 1–9.

  • Vesely, W. E., Goldberg, F. F., Roberts, N. H., & Haasl, D. F. (1981). Fault tree handbook. Washington, DC: Government Printing Office.

    Google Scholar 

  • Vesely, W. E., Dugan, J., Fragola, J., Minarick, J., & Railsback, J. (2002). Fault tree handbook with aerospace applications. Washington, DC: National Aeronautics and Space Administration, NASA.

    Google Scholar 

  • Virone, G., Wood, A., Selavo, L., Cao, Q., Fang, L., Doan, T., et al. (2006). An advanced wireless sensor network for health monitoring. Proceedings of the 1st Transdisciplinary Conference on Distributed Diagnosis and Home Healthcare.

  • Wang, Y. M., Yang, J. B., & Xu, D. L. (2006). Environmental impact assessment using the evidential reasoning approach. European Journal of Operational Research, 174(3), 1885–1913.

    Article  Google Scholar 

  • Weber, P., & Simon, C. (2008). Dynamic evidential networks in system reliability analysis: A Dempster Shafer approach. Proceedings of the 16th Mediterranean Conference on Control and Automation, 603–608.

  • White, C. C. (1977). A Markov quality control process subject to partial observation. Management Science, 23(8), 843–852.

    Article  Google Scholar 

  • Wilson, D.H., & Atkeson, C.G. (2005). Simultaneous tracking and activity recognition (STAR) using many anonymous, binary sensors. Proceedings of the International Conference on Pervasive Computing, 62–79.

  • CrossBow Technology : Wireless (2010). http://www.xbow.com/Home/wHomePage.aspx (accessed January 2010).

  • World Health Organization. (2010). Ageing and life course. http://www.who.int/ageing/en/. Cited January 2010.

Download references

Acknowledgements

This work has been supported in part by the Centre for Intelligent Point of Care Sensors, funded by the Department for Education and Learning within Northern Ireland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Parente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parente, G., Nugent, C.D., Hong, X. et al. Formal Modeling Techniques for Ambient Assisted Living. Ageing Int 36, 192–216 (2011). https://doi.org/10.1007/s12126-010-9086-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12126-010-9086-8

Keywords

Navigation