Towards Topological Mechanisms Underlying Experience Acquisition and Transmission in the Human Brain

Abstract

Experience is a process of awareness and mastery of facts or events, gained through actual observation or second-hand knowledge. Recent findings reinforce the idea that a naturalized epistemological approach is needed to further advance our understanding of the nervous mechanisms underlying experience. This essay is an effort to build a coherent topological-based framework able to elucidate particular aspects of experience, e.g., how it is acquired by a single individual, transmitted to others and collectively stored in form of general ideas. Taking into account concepts from neuroscience, algebraic topology and Richard Avenarius’ philosophical analytical approach, we provide a scheme which is cast in an empirically testable fashion. In particular, we emphasize the foremost role of variants of the Borsuk-Ulam theorem, which tells us that, when a pair of opposite (antipodal) points on a sphere are mapped onto a single point in Euclidean space, the projection provides a description of both antipodal points. These antipodes stand for nervous functions and activities of the brain correlated with the mechanisms of acquisition and transmission of experience.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Afraimovich, V., Tristan, I., Varona, P., & Rabinovich, M. (2013). Transient dynamics in complex systems: heteroclinic sequences with multidimensional unstable manifolds. Discontinuity, Nonlinearity and Complexity, 2(1), 21–41.

    Article  Google Scholar 

  2. Arai, M., Brandt, V., & Dabaghian, Y. (2014). The effects of theta precession on spatial learning and simplicial complex dynamics in a topological model of the hippocampal spatial map. PLoS Computational Biology, 10(6), e1003651.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Avenarius, R. (1908). Kritik Der Reinen Erfahrung von Richard Avenarius. Lepzig: C.R. Reisland.

    Google Scholar 

  4. Barrett, L. F., & Simmons, W. K. (2015). Interoceptive predictions in the brain. Nature Reviews. Neuroscience, 16(7), 419–429.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Barttfeld, P., Uhrig, L., Sitt, J. D., Sigman, M., Jarraya, B., & Dehaene, S. (2015). Signature of consciousness in the dynamics of resting-state brain activity. PNAS, 112(3), 887–892.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Beggs, J. M., & Timme, N. (2012). Being critical of criticality in the brain. Frontiers in Physiology, 3, 163.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bengson, J. J., Kelley, T. A., Zhang, X., Wang, J.-L., & Mangun, G. R. (2014). Spontaneous neural fluctuations predict decisions to attend. Journal of Cognitive Neuroscience, 26(11), 2578–2584.

    Article  PubMed  Google Scholar 

  8. Benson, A. R., Gleich, D. F., & Leskovec, J. (2016). Higher-order organization of complex networks. Science, 353(6295), 163–166. doi:10.1126/science.aad9029.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Betzel, R. F., Byrge, L., He, Y., Goñi, J., Zuo, X.-N., & Sporns, O. (2014). Changes in structural and functional connectivity among resting-state networks across the human lifespan. NeuroImage, 2, 345–357.

    Article  Google Scholar 

  10. Beyer, W. A., & Zardecki, A. (2004). The early history of the ham sandwich theorem. American Mathematical Monthly, 1, 58–61.

    Article  Google Scholar 

  11. Borsuk, M. (1933). Drei sätze über die n-dimensional euklidische sphäre. Fundamenta Mathematicae XX, 177–190.

  12. Borsuk, M. (1958-1959). Concerning the classification of topological spaces from the standpoint of the theory of retracts. Fundamenta Mathematicae XLVI, 177–190.

  13. Borsuk, M. (1969). Fundamental retracts and extensions of fundamental sequences. Fundamenta Mathematicae, 1, 55–85.

    Google Scholar 

  14. Cavell, S. (2002). Knowing and acknowledging must We mean what We say (pp. 238–266). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  15. Chen, Z., Gomperts, S. N., Yamamoto, J., & Wilson, M. A. (2014). Neural representation of spatial topology in the rodent hippocampus. Neural Computation, 26, 1–39.

    Article  PubMed  Google Scholar 

  16. Chicharro, D., & Ledberg, A. (2012). When two become one: the limits of causality analysis of brain dynamics. PloS One, 7(3), e32466. doi:10.1371/journal.pone.0032466.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Churchland, P. M. (2007). Neurophilosophy At Work. Cambridge Univ Pr. ISBN-10: 0521864720. ISBN-13: 978–0521864725.

  18. Collins, G. P. (2004). The shapes of space. Scientific American, 291, 94–103.

    Article  PubMed  Google Scholar 

  19. Dabaghian, Y., Mémoli, F., Frank, L., & Carlsson, G. (2012). A topological paradigm for hippocampal spatial map formation using persistent homology. PLoS Computational Biology, 8(8), e1002581.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dabaghian, Y., Brandt, V. L., & Frank, L. M. (2014). Reconceiving the hippocampal map as a topological template. eLife, 3, e03476.

    Article  PubMed  PubMed Central  Google Scholar 

  21. de Arcangelis, L., & Herrmann, H. J. (2010). Learning as a phenomenon occurring in a critical state. PNAS, 107, 3977–3981.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Deco, G., & Jirsa, V. K. (2012). Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. The Journal of Neuroscience, 32(10), 3366–3375.

    Article  PubMed  Google Scholar 

  23. Dodson, C. T. J., & Parker, P. E. (1997). A user’s guide to algebraic topology. Dordrecht: Kluwer.

    Book  Google Scholar 

  24. Filmer, H. L., Dux, P. E., & Mattingley, J. B. (2014). Applications of transcranial direct current stimulation for understanding brain function. Trends in Neurosciences, 12, 742–753.

    Article  Google Scholar 

  25. Friston, K. (2008). Hierarchical models in the brain. PLoS Computational Biology, 4, e1000211.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Friston, K. (2010). The free-energy principle: a unified brain theory? Nature Reviews. Neuroscience, 11(2), 127–138.

    Article  PubMed  Google Scholar 

  27. Friston, K., Rigoli, F., Ognibene, D., Mathys, C., Fitzgerald, T., & Pezzulo, G. (2015). Active inference and epistemic value. Cognitive Neuroscience, 13, 1–28.

    Article  Google Scholar 

  28. Gibson, J. J. (1950). The perception of the visual world. Greenwood: Greenwood Press, Westpost, Conn.

    Google Scholar 

  29. Gibson, J. J. (1971). The information available in pictures. Leonardo, 4, 27–35.

    Article  Google Scholar 

  30. Gibson, J. J. (1979). The theory of affordance in the ecological approach to visual perception. Hillsdale: Erlbaum.

    Google Scholar 

  31. Gibson, J. J. (1986). The ecological approach to visual perception. Boston: Houghton-Mifflin.

    Google Scholar 

  32. Giusti, C., Pastalkova, C., & Itskov. (2015). Clique topology reveals intrinsic geometric structure in neural correlations. Proceedings of the National Academy of Sciences of the United States of America, 112(44), 13455–13460. doi:10.1073/pnas.1506407112.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gorgolewski, K. J., Lurie, D., Urchs, S., Kipping, J. A., Craddock, R. C., Milham, M. P., Margulies, D. S., & Smallwood, J. (2014). A correspondence between individual differences in the brain's intrinsic functional architecture and the content and form of self-generated thoughts. PloS One, 9(5), e97176.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Grau, C., Ginhoux, R., Riera, A., Nguyen, T. L., Chauvat, H., Berg, M., Amengual, J. L., Pascual-Leone, A., & Ruffini, G. (2014). Conscious brain-to-brain communication in humans using non-invasive technologies. PloS One, 9(8), e105225. doi:10.1371/journal.pone.0105225.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Heft, H. (1997). The relevance of Gibson’s ecological approach to perception for environment-behavior studies. In G. T. Moore & R. W. Marans (Eds.), Advances in environment, behavior, and design. New York: Plenum Press.

    Google Scholar 

  36. Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. PNAS, 79, 2554–2558.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hume, D. (1739–40). A Treatise of Human Nature: Being an Attempt to introduce the experimental Method of Reasoning into Moral Subjects. Penguin Classics; New Ed edition (31 Oct. 1985).

  38. Izhikevich, E. M. (2010). Hybrid spiking models. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 368(1930), 5061–5070.

    Article  PubMed  Google Scholar 

  39. Jirsa, V. K., Fuchs, A., & Kelso, J. A. S. (1998). Connecting cortical and behavioral dynamics: bimanual coordination. Neural Computation Archive, 10(8), 2019–2045.

    Article  Google Scholar 

  40. Johnson-Laird, P. N. (2010). Mental models and human reasoning. PNAS, 107(43), 18243–18250.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kida, T., Tanaka, E., & Kakigi, R. (2016). Multi-dimensional dynamics of human electromagnetic brain activity. Frontiers in Human Neuroscience, 9, 713. doi:10.3389/fnhum.2015.00713.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kleineberg, K.-K., Boguñá, M., Serrano, M. A., & Papadopoulos, F. (2016). Hidden geometric correlations in real multiplex networks. Nature Physics. doi:10.1038/nphys3812.

    Google Scholar 

  43. Körding, K. P., Beierholm, U., Ma, W. J., Quartz, S., Tenenbaum, J. B., & Shams, L. (2007). Causal inference in multisensory perception. PloS One, 2(9), e943.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lech, R. K., Güntürkün, O., & Suchan, B. (2016). An interplay of fusiform gyrus and hippocampus enables prototype- and exemplar-based category learning. Behavioural Brain Research. doi:10.1016/j.bbr.2016.05.049.

    PubMed  Google Scholar 

  45. Lewin, K. (1935). A dynamic theory of personality. New York and London: McGraw_Hill Book Company, Inc.

    Google Scholar 

  46. Lewin, K. (1936). Principles of Topological Psychology (F. Heider and G. M. Heider, transl.). New York: McGraw-Hill.

    Book  Google Scholar 

  47. Libet, B., Gleason, C. A., Wright, E. W., & Pearl, D. K. (1983). Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential). The unconscious initiation of a freely voluntary act. Brain, 106(Pt 3), 623–642.

    Article  PubMed  Google Scholar 

  48. Linkenkaer-Hansen, K., Nikouline, V. V., Palva, J. M., & Ilmoniemi, R. J. (2001). Long-range temporal correlations and scaling behavior in human brain oscillations. The Journal of Neuroscience, 21(4), 1370–1377.

    PubMed  Google Scholar 

  49. Luce, R. D., D'Zmura, M., Hoffman, D., Iverson, G. J., Romney, A. K. (eds) (1995) Geometric representations of perceptual phenomena. Papers in honor of Tarow Indow on his 70th birthday. Lawrence Erlbaum Associates.

  50. Luneburg, R. K. (1947). Mathematical analysis of binocular vision. Princeton: Princeton University Press.

    Google Scholar 

  51. Marr D (1982) Vision. A computational investigation into the human representation and processing of visual information. New York: W. H. Freeman and Company.

  52. Marsaglia, G. (1972). Choosing a point from the surface of a sphere. Annals of Mathematical Statistics, 43(2), 645–646.

    Article  Google Scholar 

  53. Matoušek, J. (2003). Using the Borsuk–ulam theorem. In Lectures on Topological Methods in Combinatorics and Geometry. Berlin Heidelberg: Springer-Verlag.

    Google Scholar 

  54. Mazzucato, L., Fontanini, A., & La Camera, G. (2016). Stimuli reduce the dimensionality of cortical activity. Frontiers in Systems Neuroscience. doi:10.3389/fnsys.2016.00011.

    PubMed  PubMed Central  Google Scholar 

  55. Milton, R., Babichev, A., & Dabaghian, Y. A. (2015). A topological approach to synaptic connectivity and spatial memory. BMC Neuroscience, 16(Suppl 1), P44.

    Article  PubMed Central  Google Scholar 

  56. Mitroi-Symeonidis, F.-C. (2015). Convexity and sandwich theorems. European Journal of Research in Applied Sciences, 1, 9–11.

    Google Scholar 

  57. Nieuwenhuys, R., Voogd, J., & van Huijzen, C. (2008). The human central nervous system. Heidelberg: Springer.

    Book  Google Scholar 

  58. Ogasawara, Y. (2010). Sufficient conditions for the existence of a primitive chaotic behavior. Journal of the Physical Society of Japan, 79(2010), 15002.

    Article  Google Scholar 

  59. Ogasawara, Y., & Oishi, S. (2012). Consideration of a primitive chaos. Journal of the Physical Society of Japan, 81(2012), 103001.

    Article  Google Scholar 

  60. Ogasawara, Y., & Oishi, S. (2014). Characteristic spaces emerging from primitive chaos. Journal of the Physical Society of Japan, 83(2014), 014001.

    Article  Google Scholar 

  61. Ogasawara, Y. (2015). A structure behind primitive chaos. Journal of the Physical Society of Japan, 84(2015), 064007.

    Article  Google Scholar 

  62. Papo, D. (2014). Functional significance of complex fluctuations in brain activity: from resting state to cognitive neuroscience. Frontiers in Systems Neuroscience, 8, 112.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Parise, C. V., Spence, C., & Ernst, M. O. (2011). When correlation implies causation in multisensory integration. Current Biology, 22(1), 46–49.

    Article  PubMed  Google Scholar 

  64. Peters, J. F. (2014). Topology of digital images. Visual pattern discovery in proximity spaces. In Intelligent Systems Reference Library. Berlin: Springer.

    Google Scholar 

  65. Peters, J. F. (2016). Computational Proximity. Excursions in the Topology of Digital Images. Intelligent Systems Reference Library (p. 102). Switzerland: Springer Int. Pub. doi:10.1007/978–3–319-30262-1.

    Google Scholar 

  66. Peters, J. F., Tozzi, A., & Ramanna, S. (2016). Brain tissue tessellation shows absence of canonical microcircuits. Neuroscience Letters, 626, 99–105. doi:10.1016/j.neulet.2016.03.052.

    Article  PubMed  Google Scholar 

  67. Popper, K. R., Eccles, J. C. (1977). The self and its brain. Berlin: Springer International. p. 425. ISBN 3–540–08307-3. You would agree, I think, that in our experience of the world everything comes to us through the senses [...].

  68. Robinson, P. A., Zhao, X., Aquino, K. M., Griffiths, J. D., Sarkar, S., & Mehta-Pandejee, G. (2016). Eigenmodes of brain activity: neural field theory predictions and comparison with experiment. NeuroImage. doi:10.1016/j.neuroimage.2016.04.050.

    Google Scholar 

  69. Rock, I. (1983). The logic of perception. Cambridge: MIT Press.

    Google Scholar 

  70. Roldán, É., Martínez, I. A., Parrondo, J. M. R., & Petrov, D. (2014). Universal features in the energetics of symmetry breaking. Nature Physics, 10(6), 457–461. doi:10.1038/nphys2940.

  71. Russo Krauss, C. (2013). Il sistema dell'esperienza pura. Firenze: Le Càriti.

    Google Scholar 

  72. Russo Krauss, C. (2015). L'empiriocriticismo di Richard Avenarius tra psicofisiologia e teoria della consocenza. In R. Avenarius (Ed.), Il concetto umano di mondo. Morcelliana: Brescia.

    Google Scholar 

  73. Scholz, J. P., Kelso, J. A. S., & Schöner, G. (1987). Nonequilibrium phase transitions in coordinated biological motion: critical slowing down and switching time. Physics Letters A, 123(8), 390–394. doi:10.1016/0375-9601(87)90038-7.

    Article  Google Scholar 

  74. Sengupta, B., Stemmler, M. B., & Friston, K. J. (2013). Information and efficiency in the nervous system--a synthesis. PLoS Computational Biology, 9(7), e1003157.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sengupta, B., Friston, K. J., & Penny, W. D. (2014). Efficient gradient computation for dynamical models. NeuroImage, 98, 521–527.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Sengupta, B., Tozzi, A., Cooray, G. K., Douglas, P. K., & Friston, K. J. (2016). Towards a neuronal gauge theory. PLoS Biology, 14(3), e1002400.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Simas, T., Chavez, M., Rodriguez, P. R., & Diaz-Guilera, A. (2015). An algebraic topological method for multimodal brain networks comparisons. Frontiers in Psychology, 6, 904. doi:10.3389/fpsyg.2015.00904 .eCollection 2015

    Article  PubMed  PubMed Central  Google Scholar 

  78. Singer, W., & Lazar, A. (2016). Does the cerebral cortex exploit high-dimensional, non-linear dynamics for information processing? Frontiers in Computational Neuroscience. doi:10.3389/fncom.2016.00099.

    PubMed  PubMed Central  Google Scholar 

  79. Stemmler, M., Mathis, A., & Herz, A. V. M. (2015). Connecting multiple spatial scales to decode the population activity of grid cells. Science Advances, 1, e1500816.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Suppes, P. (2002). Representation and invariance of scientific structures. Stanford: Center for the Study of Language and Information Publication.

    Google Scholar 

  81. Tognoli, E., & Kelso, J. A. (2014). Enlarging the scope: grasping brain complexity. Frontiers in Systems Neuroscience, 8, 122.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Tononi, G. (2008). Consciousness as integrated information: a provisional manifesto. The Biological Bulletin, 215(3), 216–242.

    Article  PubMed  Google Scholar 

  83. Tozzi, A. (2016). Borsuk-Ulam Theorem Extended to Hyperbolic Spaces. In J. F. Peters (Ed.), Computational Proximity. Excursions in the Topology of Digital Images (pp. 169–171). doi:10.1007/978–3–319-30262-1.

    Google Scholar 

  84. Tozzi, A., & Peters, J. F. (2016a). Towards a fourth spatial dimension of brain activity. Cognitive Neurodynamics. doi:10.1007/s11571-016-9379-z.

    PubMed  Google Scholar 

  85. Tozzi, A., & Peters, J. F. (2016b). A topological approach unveils system invariances and broken symmetries in the brain. Journal of Neuroscience Research. doi:10.1002/jnr.23720.

    Google Scholar 

  86. Tozzi, A., Fla, T., Peters, J. F. (2016). Building a minimum frustration framework for brain functions in long timescales. Journal of Neuroscience Research, 94(8), 702–716.

  87. Vuksanovic, V., & Hövel, P. (2014). Functional connectivity of distant cortical regions: role of remote synchronization and symmetry in interactions. NeuroImage, 97, 1–8.

    Article  PubMed  Google Scholar 

  88. Watanabe, T., Hirose, S., Wada, H., Imai, Y., Machida, T., Shirouzu, I., Konishi, S., Miyashita, Y., & Masuda, N. (2014). Energy landscapes of resting-state brain networks. Frontiers in Neuroinformatics, 8, 12.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Weeks, J. R. (2002). The shape of space (IInd ed.). New York-Basel: Marcel Dekker, inc..

    Google Scholar 

  90. Weyl, H. (1982). Symmetry. Princeton: Princeton University Press.

    Google Scholar 

  91. Whitehead, A. N. (1919). An enquiry concerning the principles of natural knowledge. Cambridge: Cambridge University Press.

    Google Scholar 

  92. Whitehead, A. N., & Russell, B. (1910). Principia mathematica (1st ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  93. Zeeman, E. C. (1962). The topology of the brain and visual perception. In M. K. Fort Jr. (Ed.), Topology of 3-manifolds and related topics (pp. 240–256). Upper Saddle River: Prentice-Hall.

    Google Scholar 

  94. Zlotnik, A., Nagao, R., Kiss, I. Z., & Li, J. S. (2016). Phase-selective entrainment of nonlinear oscillator ensembles. Nature Communications, 7, 10788. doi:10.1038/ncomms10788.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Authors would like to thank Chiara Russo Krauss and Thomas Feldges for commenting on an earlier version of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arturo Tozzi.

Ethics declarations

Conflict of Interest

The Author Tozzi declares that he has no conflict of interest. The Author Peters declares that he/she has no conflict of interest.

Human Study

This article does not contain any studies with human participants or animals performed by any of the Authors.

Informed Consent

Not needed.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tozzi, A., Peters, J.F. Towards Topological Mechanisms Underlying Experience Acquisition and Transmission in the Human Brain. Integr. psych. behav. 51, 303–323 (2017). https://doi.org/10.1007/s12124-017-9380-z

Download citation

Keywords

  • Mind
  • Brain
  • Borsuk-ulam theorem
  • Sensation