Advertisement

Human Nature

, Volume 29, Issue 1, pp 45–64 | Cite as

Inbreeding in Southeastern Spain

The Impact of Geography and Demography on Marital Mobility and Marital Distance Patterns (1900–1969)
  • R. CalderónEmail author
  • C. L. Hernández
  • G. García-Varela
  • D. Masciarelli
  • P. Cuesta
Article

Abstract

In this paper, the structure of a southeastern Spanish population was studied for the first time with respect to its inbreeding patterns and its relationship with demographic and geographic factors. Data on consanguineous marriages (up to second cousins) from 1900 to 1969 were taken from ecclesiastic dispensations. Our results confirm that the patterns and trends of inbreeding in the study area are consistent with those previously observed in most non-Cantabrian Spanish populations. The rate of consanguineous marriages was apparently stable between 1900 and 1935 and then sharply decreased since 1940, which coincides with industrialization in Spain. A marked departure from Hardy-Weinberg expectations (0.25) in the ratio of first cousin (M22) to second cousin (M33) marriages in the study population (0.88) was observed. The high levels of endogamy (>80%) and its significant steadiness throughout the twentieth century is noteworthy. Accordingly, our results show that exogamous marriages were not only poorly represented but also that this reduced mobility (<6 km) suggests that the choice of a mate was preferentially local. We found higher mobility in M22 with respect to M33 cousin mating. The relationships between population size and consanguinity rates and inbreeding fit power-law distributions. A significant positive correlation was observed between inbreeding and elevation. Many Spanish populations have experienced a prolonged and considerable isolation across generations, which has led to high proportions of historical and local endogamy that is associated, in general, with high \( \overline{F} \) values. Thus, assessing genomic inbreeding using runs of homozygosity (ROH) in current Spanish populations could be an additional pertinent strategy for obtaining a more refined perspective regarding the population history inferred from the extent and frequency of ROH regions.

Keywords

Consanguinity Endogamy Iberian Peninsula Mating patterns Population genetic structure Public health 

Notes

Acknowledgments

This study was partially supported by a Spanish Ministry of Economy and Competitivity grant (Research Project, CGL2014-53985-R) to R. Calderón as Principal Investigator.

References

  1. Alfonso-Sánchez, M., Calderón, R., & Peña, J. (2004). Opportunity for natural selection in a Basque population and its secular trend: Evolutionary implications of epidemic mortality. Human Biology, 76(3), 361–381.CrossRefGoogle Scholar
  2. Alfonso-Sánchez, M. A., Aresti, U., Peña, J. A., & Calderón, R. (2005). Inbreeding levels and consanguinity structure in the Basque province of Guipúzcoa (1862-1980). American Journal of Physical Anthropology, 127(2), 240–252.CrossRefGoogle Scholar
  3. Arcos-Burgos, M., & Muenke, M. (2002). Genetics of population isolates. Clinical Genetics, 61(4), 233–247.CrossRefGoogle Scholar
  4. Aresti, U. (2006). Estructura y evolución de la consanguinidad en Guipúzcoa, 1862–1995. Efectos de la migración sobre el parentesco genético. Universidad del País Vasco, Bilbao.Google Scholar
  5. Aresti, U., Alfonso-Sánchez, M. A., Peña, J., & Calderón, R. (2001). Estructura y niveles de consanguinidad (1862 – 1995) en la población del Goierri (Guipúzcoa, País Vasco). Revista Española de Antropología Biológica, 22, 97–107.Google Scholar
  6. Bittles, A. H. (2012). Consanguinity in context. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  7. Bittles, A. H., & Egerbladh, I. (2005). The influence of past endogamy and consanguinity on genetic disorders in northern Sweden. Annals of Human Genetics, 69(Pt 5), 549–558.CrossRefGoogle Scholar
  8. Blanco Villegas, M. J., Boattini, A., Otero, H. R., & Pettener, D. (2004). Inbreeding patterns in La Cabrera, Spain: Dispensations, multiple consanguinity analysis, and isonymy. Human Biology, 76(2), 191–210.CrossRefGoogle Scholar
  9. Boattini, A., José, M., Villegas, B., & Pettener, D. (2007). Genetic structure of La Cabrera, Spain, from surnames and migration matrices. Human Biology, 79(6), 649–666.CrossRefGoogle Scholar
  10. Boëtsch, G., Prost, M., & Rabino-Massa, E. (2002). Evolution of consanguinity in a French Alpine Valley: The Vallouise in the Briancon region (17th-19th centuries). Human Biology, 74(2), 285–300.CrossRefGoogle Scholar
  11. Calderón, R. (1989). Consanguinity in the archbishopric of Toledo, Spain, 1900–79. I. Types of consanguineous mating in relation to premarital migration and its effects on inbreeding levels. Journal of Biosocial Science, 21(3), 253–266.CrossRefGoogle Scholar
  12. Calderón, R., Pena, J. A., Morales, B., & Guevara, J. I. (1993). Inbreeding patterns in the Basque Country (Alava Province, 1831-1980). Human Biology, 65(5), 743–770.Google Scholar
  13. Calderón, R., Morales, B., Peña, J. A., & Delgado, J. (1995). Sex-linked versus autosomal inbreeding coefficient in close consanguineous marriages in the Basque Country and Castile (Spain): Genetic implications. Journal of Biosocial Science, 27(4), 379–391.CrossRefGoogle Scholar
  14. Calderón, R., Pena, J. A., Delgado, J., & Morales, B. (1998). Multiple kinship in two Spanish regions: New model relating multiple and simple consanguinity. Human Biology, 70(3), 535–561.Google Scholar
  15. Calderón, R., Aresti, U., Ambrosio, B., & González-Martín, A. (2009). Inbreeding coefficients for X-linked and autosomal genes in consanguineous marriages in Spanish populations: The case of Guipúzcoa (Basque Country). Annals of Human Genetics, 73(2), 184–195.CrossRefGoogle Scholar
  16. Cavalli-Sforza, L. L., & Bodmer, W. F. (2013). The genetics of human populations. New York: Dover.Google Scholar
  17. Cavalli-Sforza, L. L., Moroni, A., & Zei, G. (2004). Consanguinity, inbreeding and genetic drift in Italy. Princeton: Princeton University Press.Google Scholar
  18. Di Gaetano, C., Fiorito, G., Ortu, M. F., Rosa, F., Guarrera, S., Pardini, B., et al. (2014). Sardinians genetic background explained by runs of homozygosity and genomic regions under positive selection. PLoS One, 9(3), e91237.CrossRefGoogle Scholar
  19. Fix, A. (1999). Migration and colonization in human microevolution. Cambridge: Cambridge University Press.Google Scholar
  20. Fuster, V., Morales, B., Mesa, M. S., & Martin, J. (1996). Inbreeding patterns in the Gredos Mountain Range (Spain). Human Biology, 68(1), 75–93.Google Scholar
  21. Gazal, S., Sahbatou, M., Perdry, H., Letort, S., Génin, E., & Leutenegger, A. L. (2014). Inbreeding coefficient estimation with dense SNP data: Comparison of strategies and application to HapMap III. Human Heredity, 77(1–4), 49–62.CrossRefGoogle Scholar
  22. Gueresi, P. (2012). Early breakdown of isolation revealed by marriage behaviour in a Ladin-speaking community (Gardena Valley, South Tyrol, Italy, 1825-1924). Journal of Biosocial Science, 44(3), 365–371.CrossRefGoogle Scholar
  23. Gueresi, P., Pettener, D., & Veronesi, F. M. (2001). Marriage behaviour in the alpine Non Valley from 1825 to 1923. Annals of Human Biology, 28(2), 157–171.CrossRefGoogle Scholar
  24. Hajnal, J. (1963). Concepts of random mating and the frequency of consanguineous marriages. Proceedings of the Royal Society of London Series B, 159, 125–177.CrossRefGoogle Scholar
  25. Hartl, D., & Clark, A. (2006). Principles of population genetics. Sunderland: Sinauer Associates.Google Scholar
  26. Kirin, M., McQuillan, R., Franklin, C. S., Campbell, H., Mckeigue, P. M., & Wilson, J. F. (2010). Genomic runs of homozygosity record population history and consanguinity. PLoS One, 5(11), e13996.CrossRefGoogle Scholar
  27. Lebart, L., Morineau, A., & Warwick, K. (1984). Multivariate descriptive statistical analysis: correspondence analysis and related techniques for large matrices. New York: John Wiley & Sons.Google Scholar
  28. Lieberson, S., & Waters, M. (1988). From many strands: Ethnic and racial groups in contemporary America. New York: Russell Sage Foundation.Google Scholar
  29. López Bermúdez, F. (2011). El interés y la magia de la Sierra del Segura. In (Antonino González Blanco, Rafael González Fernández, and José Antonio Molina Gómez, eds.) Antigüedad y Cristianismo. Mozárabes. Identidad y continuidad de su historia. XXVIII (pp. 303–312). Murcia: Universidad de Murcia.Google Scholar
  30. López-Arlandis, J. M., Vílchez, J. J., Palau, F., & Sevilla, T. (1995). Friedreich’s ataxia: An epidemiological study in Valencia, Spain, based on consanguinity analysis. Neuroepidemiology, 14(1), 14–19.CrossRefGoogle Scholar
  31. Malacarne, E., Danubio, M. E., & Gruppioni, G. (2005). The effects of geographical and prolonged cultural isolation on the marital behaviour of an Alpine community (Valsesia-Italy, 1618–1899). Human Evolution, 20(2–3), 167–179.CrossRefGoogle Scholar
  32. Masterson, J. G. (1970). Consanguinity in Ireland. Human Heredity, 20(4), 371–382.CrossRefGoogle Scholar
  33. McQuillan, R., Leutenegger, A.-L., Abdel-Rahman, R., Franklin, C. S., Pericic, M., Barac-Lauc, L., et al. (2008). Runs of homozygosity in European populations. American Journal of Human Genetics, 83(3), 359–372.CrossRefGoogle Scholar
  34. Morales, B. (1992). Estructura de la consanguinidad en la Diócesis de Siguenza-Guadalajara (1855–1980). Variación histórica, micro-geográfica y genealógica. Universidad del País Vasco, Bilbao.Google Scholar
  35. Moroni, A., Amelli, A., Anguinetti, W., Luchette, E., Rossi, O., & Siri, E. (1972). La consanguineita umana nell’isola di Sardegna dal secolo XVIII al secolo XX. Estratto dall’Ateneo Parmense, 8(1), 69–92.Google Scholar
  36. Nothnagel, M., Lu, T. T., Kayser, M., & Krawczak, M. (2010). Genomic and geographic distribution of SNP-defined runs of homozygosity in Europeans. Human Molecular Genetics, 19(15), 2927–2935.CrossRefGoogle Scholar
  37. Pemberton, T. J., & Rosenberg, N. A. (2014). Population-genetic influences on genomic estimates of the inbreeding coefficient: A global perspective. Human Heredity, 77(1–4), 37–48.CrossRefGoogle Scholar
  38. Pemberton, T. J., Absher, D., Feldman, M. W., Myers, R. M., Rosenberg, N. A., & Li, J. Z. (2012). Genomic patterns of homozygosity in worldwide human populations. American Journal of Human Genetics, 91(2), 275–292.CrossRefGoogle Scholar
  39. Pettener, D. (1985). Consanguineous marriages in the Upper Bologna Appennine (1565–1980): Microgeographic variations, pedigree structure and correlation of inbreeding secular trend with changes in population size. Human Biology, 57(2), 267–288.Google Scholar
  40. Pugach, I., & Stoneking, M. (2015). Genome-wide insights into the genetic history of human populations. Investigative Genetics, 6, 6.CrossRefGoogle Scholar
  41. Rabino-Massa, E., Prost, M., & Boëtsch, G. (2005). Social structure and consanguinity in a French mountain population (1550–1849). Human Biology, 77(2), 201–212.CrossRefGoogle Scholar
  42. Relethford, J. H. (1991). Effect of population size on marital migration distance. Human Biology, 63(1), 95–98.Google Scholar
  43. Santo Tomás, M. J. (1990). Biodemografía de las comarcas de la Ojeda y la Pernía: provincia de Palencia, 1875–1985. León: Universidad de León.Google Scholar
  44. Tarini, B. A., Konczal, L. L., Goldenberg, A. J., Goldman, E. B., & McCandless, S. E. (2013). The perils of SNP microarray testing: Uncovering unexpected consanguinity. Pediatric Neurology, 49(1), 50–53.CrossRefGoogle Scholar
  45. Templeton, A. R. (2006). Population genetics and microevolutionary theory. Hoboken: Wiley.CrossRefGoogle Scholar
  46. Ten Kate, L. P., Teeuw, M. E., Henneman, L., & Cornel, M. C. (2014). Consanguinity and endogamy in the Netherlands: Demographic and medical genetic aspects. Human Heredity, 77(1–4), 161–166.CrossRefGoogle Scholar
  47. Wright, S. (1922). Coefficients of inbreeding and relationship. The American Naturalist, 56(645), 330–338.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • R. Calderón
    • 1
    Email author
  • C. L. Hernández
    • 1
  • G. García-Varela
    • 1
  • D. Masciarelli
    • 1
  • P. Cuesta
    • 2
  1. 1.Departamento de Zoología y Antropología Física, Facultad de BiologíaUniversidad ComplutenseMadridSpain
  2. 2.Centro de Proceso de DatosUniversidad ComplutenseMadridSpain

Personalised recommendations