Skip to main content
Log in

The Driving Forces of Cultural Complexity

Neanderthals, Modern Humans, and the Question of Population Size

  • Published:
Human Nature Aims and scope Submit manuscript

Abstract

The forces driving cultural accumulation in human populations, both modern and ancient, are hotly debated. Did genetic, demographic, or cognitive features of behaviorally modern humans (as opposed to, say, early modern humans or Neanderthals) allow culture to accumulate to its current, unprecedented levels of complexity? Theoretical explanations for patterns of accumulation often invoke demographic factors such as population size or density, whereas statistical analyses of variation in cultural complexity often point to the importance of environmental factors such as food stability, in determining cultural complexity. Here we use both an analytical model and an agent-based simulation model to show that a full understanding of the emergence of behavioral modernity, and the cultural evolution that has followed, depends on understanding and untangling the complex relationships among culture, genetically determined cognitive ability, and demographic history. For example, we show that a small but growing population could have a different number of cultural traits from a shrinking population with the same absolute number of individuals in some circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aoki, K. (2015). Modeling abrupt cultural regime shifts during the Paleolithic and stone age. Theoretical Population Biology, 100, 6–12.

    Article  Google Scholar 

  • Aoki, K., Lehmann, L., & Feldman, M. W. (2011). Rates of cultural change and patterns of cultural accumulation in stochastic models of social transmission. Theoretical Population Biology, 79(4), 192–202.

    Article  Google Scholar 

  • Atkinson, Q. D., Gray, R. D., & Drummond, A. J. (2008). mtDNA variation predicts population size in humans and reveals a major Southern Asian chapter in human prehistory. Molecular Biology and Evolution, 25(2), 468–474.

    Article  Google Scholar 

  • Briggs, A. W., Good, J. M., Green, R. E., Krause, J., Maricic, T., Stenzel, U., et al. (2009). Targeted retrieval and analysis of five Neandertal mtDNA genomes. Science, 325(5938), 318–321.

    Article  Google Scholar 

  • Caldwell, C. A., & Millen, A. E. (2010). Conservatism in laboratory microsocieties: unpredictable payoffs accentuate group-specific traditions. Evolution and Human Behavior, 31(2), 123–130.

    Article  Google Scholar 

  • Carja, O., Liberman, U., & Feldman, M. W. (2014). Evolution in changing environments: modifiers of mutation, recombination, and migration. Proceedings of the National Academy of Sciences, 111(50), 17935–17940.

    Article  Google Scholar 

  • Cavalli-Sforza, L., & Feldman, M. W. (1981). Cultural transmission and evolution. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Collard, M., Kemery, M., & Banks, S. (2005). Causes of toolkit variation among hunter-gatherers: a test of four competing hypotheses. Canadian Journal of Archaeology, 29(1), 1–19.

    Google Scholar 

  • Collard, M., Buchanan, B., & O’Brien, M. J. (2013). Population size as an explanation for patterns in the Paleolithic archaeological record. Current Anthropology, 54(S8), S388–S396.

    Article  Google Scholar 

  • Collard, M., Vaesen, K., Cosgrove, R. & Roebroeks, W. (2016). The empirical case against the “demographic turn” in Palaeolithic archaeology. Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 371, 20150242. doi:10.1098/rstb.2015.0242

  • Derex, M., Beugin, M.-P., Godelle, B., & Raymond, M. (2013). Experimental evidence for the influence of group size on cultural complexity. Nature, 503(7476), 389–391.

    Article  Google Scholar 

  • Diamond, J. (1978). The Tasmanians: the longest isolation, the simplest technology. Nature, 273, 185–186.

    Article  Google Scholar 

  • Diamond, J. M. (1998). Guns, germs and steel: a short history of everybody for the last 13,000 years. London: Random House.

    Google Scholar 

  • Ewens, W. J. (2004). Mathematical population genetics: Theoretical introduction. Interdisciplinary Applied Mathematics 27. New York: Springer-Verlag.

  • Fabre, V., Condemi, S., & Degioanni, A. (2009). Genetic evidence of geographical groups among Neanderthals. PloS One, 4(4). doi:10.1371/journal.pone.0005151.

  • Fogarty, L., Creanza, N., & Feldman, M. W. (2015a). Cultural evolutionary perspectives on creativity and human innovation. Trends in Ecology & Evolution, 30(12), 736–754.

    Article  Google Scholar 

  • Fogarty, L., Wakano, J. Y., Feldman, M. W., & Aoki, K. (2015b). Factors limiting the number of independent cultural traits that can be maintained in a population. In K. Aoki & A. Mesoudi (Eds.), Learning strategies and cultural evolution during the Paleolithic (pp. 9–21). Tokyo: Springer Japan

  • Gaál, B., Pitchford, J. W., & Wood, J. A. (2010). Exact results for the evolution of stochastic switching in variable asymmetric environments. Genetics, 184(4), 1113–1119.

    Article  Google Scholar 

  • Gilpin, W., Feldman, M. W., & Aoki, K. (2016). An ecocultural model predicts Neanderthal extinction through competition with modern humans. Proceedings of the National Academy of Sciences of the United States of America, 113, 2134–2139.

    Article  Google Scholar 

  • Henrich, J. (2004). Demography and cultural evolution: how adaptive cultural processes can produce maladaptive losses: the Tasmanian case. American Antiquity, 69(2), 197–214.

    Article  Google Scholar 

  • Henrich, J., & Broesch, J. (2011). On the nature of cultural transmission networks: evidence from Fijian villages for adaptive learning biases. Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 366(1567), 1139–1148.

  • Hochberg, M. E. (2004). A theory of modern cultural shifts and meltdowns. Proceedings of the Royal Society of London, B: Biological Sciences, 271, S313–S316.

  • Jones, R. (1977). The Tasmanian paradox. In R. V. S. Wright (Ed.), Stone tools as cultural markers: Change, evolution and complexity (pp. 189–204). Canberra: Australian Institute of Aboriginal Studies.

    Google Scholar 

  • Kempe, M., & Mesoudi, A. (2014). An experimental demonstration of the effect of group size on cultural accumulation. Evolution and Human Behavior, 35(4), 285–290.

    Article  Google Scholar 

  • Kempe, M., Lycett, S. J., & Mesoudi, A. (2014). From cultural traditions to cumulative culture: parameterizing the differences between human and nonhuman culture. Journal of Theoretical Biology, 359, 29–36.

    Article  Google Scholar 

  • Klein, R. G. (2000). Archeology and the evolution of human behavior. Evolutionary Anthropology, 9(1), 17–36.

    Article  Google Scholar 

  • Klein, R. G. (2008). Out of Africa and the evolution of human behavior. Evolutionary Anthropology, 17(6), 267–281.

    Article  Google Scholar 

  • Klein, R. G., & Steele, T. E. (2013). Archaeological shellfish size and later human evolution in Africa. Proceedings of the National Academy of Sciences of the United States of America, 110(27), 10910–10915.

    Article  Google Scholar 

  • Kline, M. A., & Boyd, R. (2010). Population size predicts technological complexity in Oceania. Proceedings of the Royal Society of London, B: Biological Sciences, 277(1693), 2559–2564.

  • Kobayashi, Y., & Aoki, K. (2012). Innovativeness, population size and cumulative cultural evolution. Theoretical Population Biology, 82(1), 38–47.

    Article  Google Scholar 

  • Kussell, E., & Leibler, S. (2005). Phenotypic diversity, population growth, and information in fluctuating environments. Science, 309(5743), 2075–2078.

    Article  Google Scholar 

  • Lachmann, M., & Jablonka, E. (1996). The inheritance of phenotypes: an adaptation to fluctuating environments. Journal of Theoretical Biology, 181(1), 1–9.

    Article  Google Scholar 

  • Lalueza-Fox, C., Rosas, A., Estalrrich, A., Gigli, E., Campos, P. F., García-Tabernero, A., et al. (2011). Genetic evidence for patrilocal mating behavior among Neandertal groups. Proceedings of the National Academy of Sciences of the United States of America, 108(1), 250–253.

    Article  Google Scholar 

  • Lehmann, L., Aoki, K., & Feldman, M. W. (2011). On the number of independent cultural traits carried by individuals and populations. Philosophical Transactions of the Royal Society of London, B: Biological Sciences, 366(1563), 424–435.

    Google Scholar 

  • Liberman, U., Van Cleve, J., & Feldman, M. W. (2011). On the evolution of mutation in changing environments: recombination and phenotypic switching. Genetics, 187(3), 837–851.

    Article  Google Scholar 

  • Marquet, P. A., Santoro, C. M., Latorre, C., Standen, V. G., Abades, S. R., Rivadeneira, M. M., et al. (2012). Emergence of social complexity among coastal hunter-gatherers in the Atacama Desert of northern Chile. Proceedings of the National Academy of Sciences of the United States of America, 109(37), 14754–14760.

    Article  Google Scholar 

  • Mesoudi, A. (2011). Variable cultural acquisition costs constrain cumulative cultural evolution. PloS One, 6(3), 15–17. doi:10.1371/journal.-pone.0018239.

    Article  Google Scholar 

  • Mithen, S. (1996). The prehistory of the mind. London: Thames and Hudson.

    Google Scholar 

  • Muthukrishna, M., Shulman, B. W., Vasilescu, V., & Henrich, J. (2013). Sociality influences cultural complexity. Proceedings of the Royal Society of London, B: Biological Sciences, 281(20132511).

  • Powell, A., Shennan, S., & Thomas, M. G. (2009). Late Pleistocene demography and the appearance of modern human behavior. Science, 324(5932), 1298–1301.

    Article  Google Scholar 

  • Read, D. (2006). Tasmanian knowledge and skill: maladaptive imitation or adequate technology? American Antiquity, 71(1), 164–184.

    Article  Google Scholar 

  • Reader, S. M., & Laland, K. N. (2003). Animal innovation. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Roberts, P., Henshilwood, C. S., Van Niekerk, K. L., Keene, P., Gledhill, A., Reynard, J., Badenhorst, S. & Lee-Thorp, J. (2016). Climate, environment and early human innovation: stable isotope and faunal proxy evidence from archaeological sites (98-59ka) in the southern Cape, South Africa. PLoS One, 11, 1–20.

  • Rodríguez-Vidal, J., d’Errico, F., Pacheco, F. G., Blasco, R., Rosell, J., Jennings, R. P., et al. (2014). A rock engraving made by Neanderthals in Gibraltar. Proceedings of the National Academy of Sciences of the United States of America, 111(37), 13301–13306.

    Article  Google Scholar 

  • Shennan, S. (2001). Demography and cultural innovation: a model and its implications for the emergence of modern human culture. Cambridge Archaeological Journal, 11(01), 5–16.

    Article  Google Scholar 

  • Stiner, M. C., & Kuhn, S. L. (2006). Changes in the “connectedness” and resilience of Paleolithic societies in Mediterranean ecosystems. Human Ecology, 34(5), 693–712.

    Article  Google Scholar 

  • Strimling, P., Sjöstrand, J., Enquist, M., & Eriksson, K. (2009). Accumulation of independent cultural traits. Theoretical Population Biology, 76(2), 77–83.

    Article  Google Scholar 

  • Ziegler, M., Simon, M. H., Hall, I. R., Barker, S., Stringer, C., & Zahn, R. (2013). Development of Middle Stone Age innovation linked to rapid climate change. Nature Communications, 4(May), 1905. doi:10.1038/ncomms2897.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Alex Mesoudi and two anonymous referees for their helpful reviews of this paper. The work was supported by a Templeton Foundation grant to MWF, Monbukagakusho grant 22101004 to KA, Monbukagakusho grant 16H06412 to JYW, and a 2020 Science Fellowship to LF at UCL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurel Fogarty.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fogarty, L., Wakano, J.Y., Feldman, M.W. et al. The Driving Forces of Cultural Complexity. Hum Nat 28, 39–52 (2017). https://doi.org/10.1007/s12110-016-9275-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12110-016-9275-6

Keywords

Navigation