Human Nature

, Volume 27, Issue 3, pp 244–260 | Cite as

Gender Interacts with Opioid Receptor Polymorphism A118G and Serotonin Receptor Polymorphism −1438 A/G on Speed-Dating Success

  • Karen WuEmail author
  • Chuansheng Chen
  • Robert K. Moyzis
  • Ellen Greenberger
  • Zhaoxia Yu


We examined an understudied but potentially important source of romantic attraction—genetics—using a speed-dating paradigm. The mu opioid receptor (OPRM1) polymorphism A118G (rs1799971) and the serotonin receptor (HTR2A) polymorphism −1438 A/G (rs6311) were studied because they have been implicated in social affiliation. Guided by the social role theory of mate selection and prior genetic evidence, we examined these polymorphisms’ gender-specific associations with speed-dating success (i.e., date offers, mate desirability). A total of 262 single Asian Americans went on speed-dates with members of the opposite gender and completed interaction questionnaires about their partners. Consistent with our prediction, significant gender-by-genotype interactions were found for speed-dating success. Specifically, the minor variant of A118G (G-allele), which has been linked to submissiveness/social sensitivity, predicted greater speed-dating success for women, whereas the minor variant of −1438 A/G (G-allele), which has been linked to leadership/social dominance, predicted greater speed-dating success for men. For both polymorphisms, reverse “dampening” effects of minor variants were found for opposite-gender counterparts. These results support previous research on the importance of the opioid and serotonergic systems in social affiliation, indicating that their influence extends to dating success, with opposite, yet gender-norm consistent, effects for men and women.


Human mate selection Opioid Serotonin Speed-dating Behavioral genetics 



We thank Society of Research on Adolescence and Psi Chi National Honor Society for funding this research and our research assistants for their hard work on this project: Jonathan B. Lim, Stephanie Nguyen, Blaise Lallathin, Paul Phandl, Melody Lim, Ronica Senores, Justin Huft, Gabriel Corpus, Jennifer Lai, and Marissa Tom.

Supplementary material

12110_2016_9257_MOESM1_ESM.docx (18 kb)
ESM 1 (DOCX 16.8 kb)


  1. Anderson, N. H., & Barrios, A. A. (1961). Primacy effects in personality impression formation. Journal of Abnormal and Social Psychology, 63, 346–350.CrossRefGoogle Scholar
  2. Barr, C. S., Schwandt, M. L., Lindell, S. G., Higley, J. D., Maestripieri, D., Goldman, D., & Heilig, M. (2008). Variation at the mu-opioid receptor gene (OPRM1) influences attachment behavior in infant primates. Proceedings of the National Academy of Sciences, 105, 5277–5281.CrossRefGoogle Scholar
  3. Benjamin, D. J., Cesarini, D., van der Loos, M. J., Dawes, C. T., Koellinger, P. D., Magnusson, P. K., & Visscher, P. M. (2012). The genetic architecture of economic and political preferences. Proceedings of the National Academy of Sciences, 109, 8026–8031.CrossRefGoogle Scholar
  4. Betzig, L. (1993). Sex, succession, and stratification in the first six civilizations: how powerful men reproduced, passed power on to their sons, and used power to defend their wealth, women, and children. In L. Ellis (Ed.), Social stratification and socioeconomic inequality (pp. 37–74). Westport, CT: Praeger.Google Scholar
  5. Bond, C., LaForge, K. S., Tian, M., Melia, D., Zhang, S., Borg, L., & Yu, L. (1998). Single-nucleotide polymorphism in the human mu opioid receptor gene alters β-endorphin binding and activity: possible implications for opiate addiction. Proceedings of the National Academy of Sciences, 95, 9608–9613.CrossRefGoogle Scholar
  6. Bray, N. J., Buckland, P. R., Hall, H., Owen, M. J., & O’Donovan, M. C. (2004). The serotonin-2 A receptor gene locus does not contain common polymorphism affecting mRNA levels in adult brain. Molecular Psychiatry, 9, 109–114.CrossRefGoogle Scholar
  7. Bunzel, R., Blümcke, I., Cichon, S., Normann, S., Schramm, J., Propping, P., & Nöthen, M. M. (1998). Polymorphic imprinting of the serotonin-2 A (5-HT 2 A) receptor gene in human adult brain. Molecular Brain Research, 59, 90–92.CrossRefGoogle Scholar
  8. Burt, S. A. (2008). Genes and popularity: evidence of an evocative gene-environment correlation. Psychological Science, 19, 112–113.CrossRefGoogle Scholar
  9. Burt, S. A. (2009). A mechanistic explanation of popularity: genes, rule breaking, and evocative gene–environment correlations. Journal of Personality and Social Psychology, 96, 783–794.CrossRefGoogle Scholar
  10. Buss, D. M., Abbott, M., Angleitner, A., Asherian, A., Biaggio, A., Blanco-Villasenor, A., & Yang, K.-S. (1990). International preferences in selecting mates: A study of 37 cultures. Journal of Cross-Cultural Psychology, 21, 5–47.CrossRefGoogle Scholar
  11. Cao, J., Liu, X., Han, S., Zhang, C. K., Liu, Z., & Li, D. (2014). Association of the HTR2A gene with alcohol and heroin abuse. Human Genetics, 133, 357–365.CrossRefGoogle Scholar
  12. Cashdan, E. (1995). Hormones, sex, and status in women. Hormones and Behavior, 29, 354–366.CrossRefGoogle Scholar
  13. Chabris, C. F., Hebert, B. M., Benjamin, D. J., Beauchamp, J., Cesarini, D., van der Loos, M., & Freese, J. (2012). Most reported genetic associations with general intelligence are probably false positives. Psychological Science, 23, 1314–1323.CrossRefGoogle Scholar
  14. Chabris, C. F., Lee, J. J., Cesarini, D., Benjamin, D. J., & Laibson, D. I. (2015). The Fourth Law of behavior genetics. Current Directions in Psychological Science, 24, 304–312.CrossRefGoogle Scholar
  15. Darwin, C. (1871). The descent of man and selection in relation to sex. London: John Murray.CrossRefGoogle Scholar
  16. Depue, R. A., & Morrone-Strupinsky, J. V. (2005). A neurobehavioral model of affiliative bonding: implications for conceptualizing a human trait of affiliation. Behavioral and Brain Sciences, 28, 313–395.Google Scholar
  17. Dijkstra, J. K., Lindenberg, S., Zijlstra, L., Bouma, E., & Veenstra, R. (2013). The secret ingredient for social success of young males: A functional polymorphism in the 5HT2A serotonin receptor gene. PloS One, 8, e54821.CrossRefGoogle Scholar
  18. Dorus, S., Vallender, E. J., Evans, P. D., Anderson, J. R., Gilbert, S. L., Mahowald, M., & Lahn, B. T. (2004). Accelerated evolution of nervous system genes in the origin of Homo sapiens. Cell, 119, 1027–1040.CrossRefGoogle Scholar
  19. Ding, Y. C., Chi, H. C., Grady, D. L., Morishima, A., Kidd, J. R., Kidd, K. K., & Zhang, Y. P. (2002). Evidence of positive selection acting at the human dopamine receptor D4 gene locus. Proceedings of the National Academy of Sciences, 99, 309–314.CrossRefGoogle Scholar
  20. Dougherty, T. W., Turban, D. B., & Callender, J. C. (1994). Confirming first impressions in the employment interview: A field study of interviewer behavior. Journal of Applied Psychology, 79, 659–665.CrossRefGoogle Scholar
  21. Eagly, A. H., & Wood, W. (1999). The origins of sex differences in human behavior: Evolved dispositions versus social roles. American Psychologist, 54, 408–423.CrossRefGoogle Scholar
  22. Eastwick, P. W., & Finkel, E. J. (2008). Sex differences in mate preferences revisited: Do people know what they initially desire in a romantic partner? Journal of Personality and Social Psychology, 94, 245–264.CrossRefGoogle Scholar
  23. Edwards, D. H., & Kravitz, E. A. (1997). Serotonin, social status and aggression. Current Opinion in Neurobiology, 7, 812–819.CrossRefGoogle Scholar
  24. Finkel, E. J., & Eastwick, P. W. (2008). Speed-dating. Current Directions in Psychological Science, 17, 193–197.CrossRefGoogle Scholar
  25. Fisman, R., Iyengar, S. S., Kamenica, E., & Simonson, I. (2008). Racial preferences in dating. The Review of Economic Studies, 75, 117–132.CrossRefGoogle Scholar
  26. Fu, W., & Akey, J. M. (2013). Selection and adaptation in the human genome. Annual Review of Genomics and Human Genetics, 14, 467–489.CrossRefGoogle Scholar
  27. Geschwind, D. H., & Flint, J. (2015). Genetics and genomics of psychiatric disease. Science, 349, 1489–1494.CrossRefGoogle Scholar
  28. Gurung, R. A. R., & Vespia, K. (2007). Looking good, teaching well? Linking liking, looks, and learning. Teaching of Psychology, 34, 5–10.Google Scholar
  29. Hastie, B. A., Riley III, J. L., Kaplan, L., Herrera, D. G., Campbell, C. M., Virtusio, K., et al. (2012). Ethnicity interacts with the OPRM1 gene in experimental pain sensitivity. Pain, 153, 1610–1619.CrossRefGoogle Scholar
  30. Hasvik, E., Schistad, E. I., Grøvle, L., Haugen, A. J., Røe, C., & Gjerstad, J. (2014). Subjective health complaints in patients with lumbar radicular pain and disc herniation are associated with a sex - OPRM1 A118G polymorphism interaction: a prospective 1-year observational study. BMC Musculoskeletal Disorders, 15, 161.CrossRefGoogle Scholar
  31. Hawks, J., Wang, E. T., Cochran, G. M., Harpending, H. C., & Moyzis, R. K. (2007). Recent acceleration of human adaptive evolution. Proceedings of the National Academy of Sciences, 104, 20753–20758.CrossRefGoogle Scholar
  32. Hazan, C., & Shaver, P. R. (1994). Attachment as an organizational framework for research on close relationships. Psychological Inquiry, 5, 1–22.CrossRefGoogle Scholar
  33. Head, M. L., Holman, L., Lanfear, R., Kahn, A. T., & Jennions, M. D. (2015). The extent and consequences of p-hacking in science. PLoS Biology, 13, e1002106.CrossRefGoogle Scholar
  34. Higley, J. D., Mehlman, P. T., Poland, R. E., Taub, D. M., Vickers, J., Suomi, S. J., & Linnoila, M. (1996). CSF testosterone and 5-HIAA correlate with different types of aggressive behaviors. Biological Psychiatry, 40, 1067–1082.CrossRefGoogle Scholar
  35. Huang, C. J., Liu, H. F., Su, N. Y., Hsu, Y. W., Yang, C. H., Chen, C. C., & Tsai, P. S. (2008). Association between human opioid receptor genes polymorphisms and pressure pain sensitivity in females. Anaesthesia, 63, 1288–1295.CrossRefGoogle Scholar
  36. Ickes, W. (1993). Traditional gender roles: Do they make, and then break, our relationships? Journal of Social Issues, 49, 71–85.CrossRefGoogle Scholar
  37. Ioannidis, J. P. (2005). Why most published research findings are false. Chance, 18, 40–47.CrossRefGoogle Scholar
  38. Ioannidis, J. P., & Khoury, M. J. (2011). Improving validation practices in “omics” research. Science, 334, 1230–1232.CrossRefGoogle Scholar
  39. Iqbal, S. A., Wallach, J. D., Khoury, M. J., Schully, S. D., & Ioannidis, J. P. (2016). Reproducible research practices and transparency across the biomedical literature. PLoS Biology, 14, e1002333.CrossRefGoogle Scholar
  40. Jang, K. L., Livesley, W. J., & Vemon, P. A. (1996). Heritability of the Big Five personality dimensions and their facets: A twin study. Journal of Personality, 64, 577–592.CrossRefGoogle Scholar
  41. Kamboh, M. I., Demirci, F. Y., Wang, X., Minster, R. L., Carrasquillo, M. M., Pankratz, V. S., & Logue, M. W. (2012). Genome-wide association study of Alzheimer’s disease. Translational psychiatry, 2, e117.Google Scholar
  42. Kato, M. V., Shimizu, T., Nagayoshi, M., Kaneko, A., Sasaki, M. S., & Ikawa, Y. (1996). Genomic imprinting of the human serotonin-receptor (HTR2) gene involved in development of retinoblastoma. American Journal of Human Genetics, 59, 1084–1090.Google Scholar
  43. Kenrick, D. T. (2006). Evolution, traits, and the stages of human courtship: Qualifying the parental investment model. Journal of Personality, 58, 97–116.CrossRefGoogle Scholar
  44. Kenrick, D. T., Neuberg, S. L., Zierk, K. L., & Krones, J. M. (1994). Evolution and social cognition: contrast effects as a function of sex, dominance, and physical attractiveness. Personality and Social Psychology Bulletin, 20, 210–217.CrossRefGoogle Scholar
  45. Kogan, A., Saslow, L. R., Impett, E. A., Oveis, C., Keltner, D., & Saturn, S. R. (2011). Thin-slicing study of the oxytocin receptor (OXTR) gene and the evaluation and expression of the prosocial disposition. Proceedings of the National Academy of Sciences, 108, 19189–19192.CrossRefGoogle Scholar
  46. Lohmueller, K. E., Pearce, C. L., Pike, M., Lander, E. S., & Hirschhorn, J. N. (2003). Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nature Genetics, 33, 177–182.CrossRefGoogle Scholar
  47. Ludbrook, J., & Dudley, H. (1998). Why permutation tests are superior to t and F tests in biomedical research. American Statistician, 52, 127–132.Google Scholar
  48. Luo, S., & Zhang, G. (2009). What leads to romantic attraction: Similarity, reciprocity, security, or beauty? evidence from a speed-dating study. Journal of Personality, 77, 933–964.CrossRefGoogle Scholar
  49. Machin, A. J., & Dunbar, R. I. M. (2011). The brain opioid theory of social attachment: a review of the evidence. Behaviour, 148, 985–1025.CrossRefGoogle Scholar
  50. Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., & Visscher, P. M. (2009). Finding the missing heritability of complex diseases. Nature, 461, 747–753.CrossRefGoogle Scholar
  51. Mehrabian, A. (1994). Evidence bearing on the affiliative tendency (MAFF) and sensitivity to rejection (MSR) scales. Current Psychology, 13, 97–116.CrossRefGoogle Scholar
  52. Menon, S., Lea, R. A., Roy, B., Hanna, M., Wee, S., Haupt, L. M., & Griffiths, L. R. (2012). The human μ-opioid receptor gene polymorphism (A118G) is associated with head pain severity in a clinical cohort of female migraine with aura patients. Journal of Headache and Pain, 13, 513–519.CrossRefGoogle Scholar
  53. Myers, R. L., Airey, D. C., Manier, D. H., Shelton, R. C., & Sanders-Bush, E. (2007). Polymorphisms in the regulatory region of the human serotonin 5-HT 2 A receptor gene (HTR2A) influence gene expression. Biological Psychiatry, 61, 167–173.CrossRefGoogle Scholar
  54. Moskowitz, D. S., Pinard, G., Zuroff, D. C., Annable, L., & Young, S. N. (2001). The effect of tryptophan on social interaction in everyday life: A placebo-controlled study. Neuropsychopharmacology, 25, 277–289.CrossRefGoogle Scholar
  55. Neale, B. M., Medland, S. E., Ripke, S., Asherson, P., Franke, B., Lesch, K. P., & Daly, M. (2010). Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 49, 884–897.CrossRefGoogle Scholar
  56. Nielsen, D. A., Hamon, S., Yuferov, V., Jackson, C., Ho, A., Ott, J., & Kreek, M. J. (2010). Ethnic diversity of DNA methylation in the OPRM1 promoter region in lymphocytes of heroin addicts. Human Genetics, 127, 639–649.CrossRefGoogle Scholar
  57. Nowak, M. A., Tarnita, C. E., & Wilson, E. O. (2010). The evolution of eusociality. Nature, 466, 1057–1062.CrossRefGoogle Scholar
  58. Open Science Collaboration (2015). Estimating the reproducibility of psychological science. Science, 349, aac4716.CrossRefGoogle Scholar
  59. Parsch, J., & Ellegren, H. (2013). The evolutionary causes and consequences of sex-biased gene expression. Nature Reviews Genetics, 14, 83–87.CrossRefGoogle Scholar
  60. Peng, R. D. (2011). Reproducible research in computational science. Science, 334, 1226–1227.Google Scholar
  61. Perilloux, C. (2014). (Mis)reading the signs: Men’s perception of women’s sexual interest. In V. A. Weekes-Shackelford & T. K. Shackelford (Eds.), Evolutionary perspectives on human sexual psychology and behavior (pp. 119–133). New York: Springer.Google Scholar
  62. Polderman, T. J. C., Benyamin, B., de Leeuw, C. A., Sullivan, P. F., van Bochoven, A., Visscher, P. M., & Posthuma, D. (2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature Genetics, 47, 702–709.CrossRefGoogle Scholar
  63. Polesskaya, O. O., Aston, C., & Sokolov, B. P. (2006). Allele C-specific methylation of the 5-HT2A receptor gene: evidence for correlation with its expression and expression of DNA methylase DNMT1. Journal of Neuroscience Research, 83, 362–373.CrossRefGoogle Scholar
  64. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., & Sham, P. C. (2007). PLINK: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81, 559–575.CrossRefGoogle Scholar
  65. Puts, D. A. (2010). Beauty and the beast: mechanisms of sexual selection in humans. Evolution and Human Behavior, 31, 157–175.CrossRefGoogle Scholar
  66. Rudman, L. A., & Glick, P. (2001). Prescriptive gender stereotypes and backlash toward agentic women. Journal of Social Issues, 57, 743–762.CrossRefGoogle Scholar
  67. Rusbult, C. E. (1980). Commitment and satisfaction in romantic associations: A test of the investment model. Journal of Experimental Social Psychology, 16, 172–186.CrossRefGoogle Scholar
  68. Saccone, S. F., Bierut, L. J., Chesler, E. J., Kalivas, P. W., Lerman, C., Saccone, N. L., & Sherry, S. T. (2009). Supplementing high-density SNP microarrays for additional coverage of disease-related genes: addiction as a paradigm. PloS One, 4, e5225.CrossRefGoogle Scholar
  69. Sadalla, E. K., Kenrick, D. T., & Vershure, B. (1987). Dominance and heterosexual attraction. Journal of Personality and Social Psychology, 52, 730–738.CrossRefGoogle Scholar
  70. Santer, B. D., Wigley, T. M. L., & Taylor, K. E. (2011). The reproducibility of observational estimates of surface and atmospheric temperature change. Science, 334, 1232–1233.CrossRefGoogle Scholar
  71. Schweiger, D., Stemmler, G., Burgdorf, C., & Wacker, J. (2014). Opioid receptor blockade and warmth-liking: effects on interpersonal trust and frontal asymmetry. Social Cognitive and Affective Neuroscience, 9, 1608–1615.CrossRefGoogle Scholar
  72. Sia, A. T., Lim, Y., Lim, E. C., Goh, R. W., Law, H. Y., Landau, R., & Tan, E. C. (2009). A118G single nucleotide polymorphism of human μ-opioid receptor gene influences pain perception and patient-controlled intravenous morphine consumption after intrathecal morphine for postcesarean analgesia. Obstetric Anesthesia Digest, 29, 26–27.CrossRefGoogle Scholar
  73. Slavich, G. M., Tartter, M. A., Brennan, P. A., & Hammen, C. (2014). Endogenous opioid system influences depressive reactions to socially painful targeted rejection life events. Psychoneuroendocrinology, 49, 141–149.CrossRefGoogle Scholar
  74. Sprecher, S., & Regan, P. C. (2002). Liking some things (in some people) more than others: partner preferences in romantic relationships and friendships. Journal of Social and Personal Relationships, 19, 463–481.CrossRefGoogle Scholar
  75. The International Consortium for Blood Pressure Genome-Wide Association Studies (2011). Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature, 478, 103–109.CrossRefGoogle Scholar
  76. Townsend, J. M., & Levy, G. D. (1990). Effects of potential partners’ physical attractiveness and socioeconomic status on sexuality and partner selection. Archives of Sexual Behavior, 19, 149–164.CrossRefGoogle Scholar
  77. Tracy, J. L., & Beall, A. T. (2011). Happy guys finish last: the impact of emotion expressions on sexual attraction. Emotion, 11, 1379–1387.CrossRefGoogle Scholar
  78. Troisi, A., Frazzetto, G., Carola, V., Di Lorenzo, G., Coviello, M., D’Amato, F. R., & Gross, C. (2011). Social hedonic capacity is associated with the A118G polymorphism of the mu-opioid receptor gene (OPRM1) in adult healthy volunteers and psychiatric patients. Social Neuroscience, 6, 88–97.CrossRefGoogle Scholar
  79. Tse, W. S., & Bond, A. J. (2002). Serotonergic intervention affects both social dominance and affiliative behaviour. Psychopharmacology, 161, 324–330.CrossRefGoogle Scholar
  80. Viikki, M., Huuhka, K., Leinonen, E., Illi, A., Setälä-Soikkeli, E., Huuhka, M., & Kampman, O. (2011). Interaction between two HTR2A polymorphisms and gender is associated with treatment response in MDD. Neuroscience Letters, 501, 20–24.CrossRefGoogle Scholar
  81. Wang, E., Ding, Y. C., Flodman, P., Kidd, J. R., Kidd, K. K., Grady, D. L., & Moyzis, R. K. (2004). The genetic architecture of selection at the human dopamine receptor D4 (DRD4) gene locus. American Journal of Human Genetics, 74, 931–944.CrossRefGoogle Scholar
  82. Wang, E. T., Kodama, G., Baldi, P., & Moyzis, R. K. (2006). Global landscape of recent inferred Darwinian selection for Homo sapiens. Proceedings of the National Academy of Sciences, 103, 135–140.Google Scholar
  83. Way, B. M., & Lieberman, M. D. (2010). Is there a genetic contribution to cultural differences? Collectivism, individualism and genetic markers of social sensitivity. Social Cognitive and Affective Neuroscience, 5, 203–211.CrossRefGoogle Scholar
  84. Way, B. M., Taylor, S. E., & Eisenberger, N. I. (2009). Variation in the μ-opioid receptor gene (OPRM1) is associated with dispositional and neural sensitivity to social rejection. Proceedings of the National Academy of Sciences, 106, 15079–15084.CrossRefGoogle Scholar
  85. Weisstaub, N. V., Zhou, M., Lira, A., Lambe, E., González-Maeso, J., Hornung, J. P., & Ansorge, M. S. (2006). Cortical 5-HT2A receptor signaling modulates anxiety-like behaviors in mice. Science, 313, 536–540.CrossRefGoogle Scholar
  86. Zhang, Y., Wang, D., Johnson, A. D., Papp, A. C., & Sadée, W. (2005). Allelic expression imbalance of human mu opioid receptor (OPRM1) caused by variant A118G. Journal of Biological Chemistry, 280, 32618–32624.CrossRefGoogle Scholar
  87. Zuk, O., Hechter, E., Sunyaev, S. R., & Lander, E. S. (2012). The mystery of missing heritability: Genetic interactions create phantom heritability. Proceedings of the National Academy of Sciences, 109, 1193–1198.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Karen Wu
    • 1
    Email author
  • Chuansheng Chen
    • 1
  • Robert K. Moyzis
    • 2
  • Ellen Greenberger
    • 1
  • Zhaoxia Yu
    • 3
  1. 1.Department of Psychology and Social BehaviorUniversity of CaliforniaIrvineUSA
  2. 2.Department of Biological Chemistry, College of MedicineUniversity of CaliforniaIrvineUSA
  3. 3.Department of StatisticsUniversity of CaliforniaIrvineUSA

Personalised recommendations