Human Nature

, Volume 27, Issue 1, pp 1–15 | Cite as

Why Go There? Evolution of Mobility and Spatial Cognition in Women and Men

An Introduction to the Special Issue
  • Elizabeth CashdanEmail author
  • Steven J. C. Gaulin


Males in many non-monogamous species have larger ranges than females do, a sex difference that has been well documented for decades and seems to be an aspect of male mating competition. Until recently, parallel data for humans have been mostly anecdotal and qualitative, but this is now changing as human behavioral ecologists turn their attention to matters of individual mobility. Sex differences in spatial cognition were among the first accepted psychological sex differences and, like differences in ranging behavior, are documented for a growing set of species. This special issue is dedicated to exploring the possible adaptive links between these cognitive and ranging traits. Multiple hypotheses, at various levels of analysis, are considered. At the functional (ultimate) level, a mating-competition hypothesis suggests that range expansion may augment mating opportunities, and a fertility-and-parental-care hypothesis suggests that range contraction may facilitate offspring provisioning. At a more mechanistic (proximate) level, differences in cue availability may support or inhibit particular sex-specific navigation strategies, and spatial anxiety may usefully inhibit travel that would not justify its costs. Studies in four different cultures—Twe, Tsimane, Yucatec Maya, and Faroese—as well as an experimental study using virtual reality tools are the venue for testing these hypotheses. Our hope is to stimulate more research on the evolutionary and developmental processes responsible for this suite of linked behavioral and cognitive traits.


Mobility Navigation Spatial cognition Development Mating strategies Parenting strategies 


  1. Barkley, C. L., & Gabriel, K. I. (2007). Sex differences in cue perception in a visual scene: investigation of cue type. Behavioral Neuroscience, 121(2), 291–300.CrossRefGoogle Scholar
  2. Berenbaum, S. A., Bryk, K. L. K., & Beltz, A. M. (2012). Early androgen effects on spatial and mechanical abilities: evidence from congenital adrenal hyperplasia. Behavioral Neuroscience, 126(1), 86–96.CrossRefGoogle Scholar
  3. Berry, J. W. (1971). Ecological and cultural factors in spatial perceptual development. Canadian Journal of Behavioural Science/Revue canadienne des sciences du comportement, 3(4), 324–336.CrossRefGoogle Scholar
  4. Binford, L. (1980). Willow smoke and dogs’ tails: Hunter-gatherer settlement systems and archaeological site formation. American Antiquity, 45(1), 4–20.CrossRefGoogle Scholar
  5. Brown, J. K. (1970). A note on the division of labor by sex. American Anthropologist, 72(5), 1073–1078.CrossRefGoogle Scholar
  6. Bryant, K. J. (1982). Personality correlates of sense of direction and geographic orientation. Journal of Personality and Social Psychology, 43(6), 1318–1324.CrossRefGoogle Scholar
  7. Burke, A., Kandler, A., & Good, D. (2012). Women who know their place. Human Nature, 23(2), 133–148.CrossRefGoogle Scholar
  8. Byrnes, J. P., Miller, D. C., & Schafer, W. D. (1999). Gender differences in risk taking: a meta-analysis. Psychological Bulletin, 125(3), 367–383.CrossRefGoogle Scholar
  9. Cameron, E., Setsaas, T., & Linklater, W. (2009). Social bonds between unrelated females increase reproductive success in feral horses. Proceedings of the National Academy of Sciences of the United States of America, 106, 13850–13853.CrossRefGoogle Scholar
  10. Campbell, A. (1999). Staying alive: evolution, culture, and women’s intrasexual aggression. Behavioral and Brain Sciences, 22(02), 203–214.Google Scholar
  11. Cashdan, E., Marlowe, F. W., Crittenden, A., Porter, C., & Wood, B. M. (2012). Sex differences in spatial cognition among Hadza foragers. Evolution and Human Behavior, 33(4), 274–284.CrossRefGoogle Scholar
  12. Cashdan, E., Kramer, K. L., Davis, H. E., Padilla, L., & Greaves, R. D. (2015). Mobility and navigation among the Yucatec Maya: sex differences reflect parental investment, not mating competition. Human Nature, 27(1). doi: 10.1007/s12110-015-9250-7.
  13. Choi, J., & Silverman, I. (1996). Sexual dimorphism in spatial behaviors: applications to route learning. Evolution and Cognition, 2(2), 165–171.Google Scholar
  14. Choi, J., McKillop, E., Ward, M., & L’Hirondelle, N. (2006). Sex-specific relationships between route-learning strategies and abilities in a large-scale environment. Environment and Behavior, 38(6), 791–801.CrossRefGoogle Scholar
  15. Clint, E. K., Sober, E., Garland, T., Jr., & Rhodes, J. S. (2012). Male superiority in spatial navigation: adaptation or side effect? The Quarterly Review of Biology, 87(4), 289–313.CrossRefGoogle Scholar
  16. Coluccia, E., & Louse, G. (2004). Gender differences in spatial orientation: a review. Journal of Environmental Psychology, 24(3), 329–340.CrossRefGoogle Scholar
  17. Croson, R., & Gneezy, U. (2009). Gender differences in preferences. Journal of Economic Literature, 47(2), 448–474.CrossRefGoogle Scholar
  18. Cross, C. P., Cyrenne D.-L. M., & Brown, G. R. (2013). Sex differences in sensation-seeking: a meta-analysis. Scientific Reports, 3(2486).Google Scholar
  19. Dabbs, J. M., Jr., Chang, E.-L., Strong, R. A., & Milun, R. (1998). Spatial ability, navigation strategy, and geographic knowledge among men and women. Evolution and Human Behavior, 19(2), 89–98.CrossRefGoogle Scholar
  20. Dawson, J. L. M., Cheung, Y. M., & Lau, R. T. S. (1975). Developmental effects of neonatal sex hormones on spatial and activity skills in the white rat. Biological Psychology, 3(3), 213–229.CrossRefGoogle Scholar
  21. Del Giudice, M. (2014). Middle childhood: an evolutionary-developmental synthesis. Child Development Perspectives, 8(4), 193–200.CrossRefGoogle Scholar
  22. Ecuyer-Dab, I., & Robert, M. (2004a). Spatial ability and home-range size: examining the relationship in Western men and women (Homo sapiens). Journal of Comparative Psychology, 118(2), 217–231.CrossRefGoogle Scholar
  23. Ecuyer-Dab, I., & Robert, M. (2004b). Have sex differences in spatial ability evolved from male competition for mating and female concern for survival? Cognition, 91(3), 221–257.CrossRefGoogle Scholar
  24. Framenau, V. W. (2005). Gender specific differences in activity and home range reflect morphological dimorphism in wolf spiders (Araneae, Lycosidae). Journal of Arachnology, 33, 334–346.CrossRefGoogle Scholar
  25. Gagnon, K. (2015). Not all those who wander are lost: Characterizing sex differences in spatial exploration and their relationship to navigation ability. PhD dissertation, University of Utah, Salt Lake City.Google Scholar
  26. Gagnon, K. T., Cashdan, E. A., Stefanucci, J. K., & Creem-Regehr, S. H. (2015). Sex differences in exploration behavior and the relationship to harm avoidance. Human Nature, 27(1). doi: 10.1007/s12110-015-9248-1.
  27. Galea, L., & Kimura, D. (1993). Sex differences in route-learning. Personality and Individual Differences, 14(1), 53–65.CrossRefGoogle Scholar
  28. Galea, L., Kavaliers, M., Ossenkopp, K.-P., Innes, D., & Hargreaves, E. (1994). Sexually dimorphic spatial learning varies seasonally in two populations. Brain Research, 635, 18–26.CrossRefGoogle Scholar
  29. Galea, L., Kavaliers, M., & Ossenkopp, K.-P. (1996). Sexually dimorphic spatial learning in meadow voles Microtus pennsylvanicus and deer mice Peromyscus maniculatus. The Journal of Experimental Biology, 199, 195–200.Google Scholar
  30. Gaulin, S. J. C. (1992). Evolution of sex difference in spatial ability. Yearbook of Physical Anthropology, 35, 125–151.CrossRefGoogle Scholar
  31. Gaulin, S., & FitzGerald, R. (1986). Sex differences in spatial ability: an evolutionary hypothesis and test. American Naturalist, 127(1), 74–88.CrossRefGoogle Scholar
  32. Gaulin, S., & FitzGerald, R. (1988). Home-range size as a predictor of mating systems in Microtus. Journal of Mammalogy, 69(2), 311–319.CrossRefGoogle Scholar
  33. Gaulin, S., & Fitzgerald, R. (1989). Sexual selection for spatial-learning ability. Animal Behaviour, 37(2), 322–331.CrossRefGoogle Scholar
  34. Gaulin, S., & Hoffman, H. (1988). Evolution and development of sex differences in spatial ability. In L. Betzig, M. Borgerhoff Mulder, & P. Turke (Eds.), Human reproductive behavior (pp. 129–152). Cambridge: Cambridge University Press.Google Scholar
  35. Geary, D. (2010). Male, female: The evolution of human sex differences. Washington D.C.: American Psychological Association.CrossRefGoogle Scholar
  36. Glaudas, X., & Rodrígues-Robles, J. A. (2011). Vagabond males and sedentary females: spatial ecology and mating system of the speckled rattlesnake (Crotalus mitchellii). Biological Journal of the Linnean Society, 103, 681–695.CrossRefGoogle Scholar
  37. Guigueno, M., Snow, D., Mac-Dougall-Shackleton, A., & Sherry, D. (2014). Female cowbirds have more accurate spatial memory than males. Biology Letters, 10, 20140026.CrossRefGoogle Scholar
  38. Halpern D. (2013). Sex differences in cognitive abilities. East Sussex, UK: Psychology Press.Google Scholar
  39. Hampson, E., & Rovet, J. F. (2015). Spatial function in adolescents and young adults with congenital adrenal hyperplasia: clinical phenotype and implications for the androgen hypothesis. Psychoneuroendocrinology, 54, 60–70.CrossRefGoogle Scholar
  40. Harris, C. R., Jenkins, M., & Glaser, D. (2006). Gender differences in risk assessment: why do women take fewer risks than men. Judgment and Decision Making, 1(1), 48–63.Google Scholar
  41. Hart, R. (1979). Children’s experience of place. New York: John Wiley and Sons.Google Scholar
  42. Hegarty, M., Montello, D. R., Richardson, A. E., Ishikawa, T., & Lovelace, K. (2006). Spatial abilities at different scales: individual differences in aptitude-test performance and spatial-layout learning. Intelligence, 34(2), 151–176.CrossRefGoogle Scholar
  43. Hewlett, B., van de Koppel, J. M., & Cavalli-Sforza, L. L. (1982). Exploration ranges of Aka pygmies of the Central African Republic. Man, 17(3), 418–430.CrossRefGoogle Scholar
  44. Hilton, C. E., & Greaves, R. D. (2008). Seasonality and sex differences in travel distance and resource transport in Venezuelan foragers. Current Anthropology, 49(1), 144–153.CrossRefGoogle Scholar
  45. Hines, M. (2003). Brain gender. Oxford: Oxford University Press.Google Scholar
  46. Hurtado, A. M., Hawkes, K., Hill, K., & Kaplan, H. (1985). Female subsistence strategies among Ache hunter-gatherers of eastern Paraguay. Human Ecology, 13(1), 1–28.CrossRefGoogle Scholar
  47. Jones, C. M., Braithwaite, V. A., & Healy, S. D. (2003). The evolution of sex differences in spatial ability. Behavioral Neuroscience, 117(3), 403–411.CrossRefGoogle Scholar
  48. Joseph, R., Hess, S., & Birecree, E. (1978). Effects of hormone manipulation and exploration on sex differences in maze learning. Behavioral Biology, 24(3), 264–277.CrossRefGoogle Scholar
  49. Jozet-Alves, C., Modéran, J., & Dickel, L. (2008). Sex differences in spatial cognition in an invertebrate: the cuttlefish. Proceedings of the Royal Society B, 275, 2049–2054.CrossRefGoogle Scholar
  50. Kaseda, Y., Ogawa, H., & Khalil, A. (1997). Causes of natal dispersal and emigration and their effects on harem formation in Misaki feral horses. Equine Veterinary Journal, 29(4), 262–266.CrossRefGoogle Scholar
  51. Kelly, R. L. (1983). Hunter-gatherer mobility strategies. Journal of Anthropological Research, 39(3), 277–306.Google Scholar
  52. Kimura, D. (2000). Sex and cognition. Cambridge: MIT Press.Google Scholar
  53. Lancy, D. F., & Grove, A. M. (2011). Getting noticed: middle childhood in cross-cultural perspective. Human Nature, 22, 281–302.CrossRefGoogle Scholar
  54. Lane, J. E., Boutin, S., Gunn, M. R., & Coltman, D. W. (2009). Sexually selected behaviour: red squirrel males search for reproductive success. Journal of Animal Ecology, 78, 296–304.CrossRefGoogle Scholar
  55. Lawton, C. (1994). Gender differences in wayfinding strategies: relationship to spatial ability and spatial anxiety. Sex Roles, 30(11), 765–779.CrossRefGoogle Scholar
  56. Lawton, C., & Kallai, J. (2002). Gender differences in wayfinding strategies and anxiety about wayfinding: a cross-cultural comparison. Sex Roles, 47(9), 389–401.CrossRefGoogle Scholar
  57. Linklater, W., Cameron, E., Minot, E., & Stafford, K. (1999). Stallion harassment and the mating system of horses. Animal Behavior, 58, 295–306.CrossRefGoogle Scholar
  58. Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: a meta-analysis. Child Development, 56, 1479–1498.CrossRefGoogle Scholar
  59. Maccoby, E. E., & Jacklin, C. N. (1974). The psychology of sex differences. Palo Alto: Stanford University Press.Google Scholar
  60. MacDonald, D., & Hewlett, B. (1999). Reproductive interests and forager mobility. Current Anthropology, 40(4), 501–524.Google Scholar
  61. Malinowski, J. C. (2001). Mental rotation and real-world wayfinding. Perceptual and Motor Skills, 92(1), 19–30.CrossRefGoogle Scholar
  62. Mastrangelo, M., Schleich, C., & Zenuto, R. (2010). Spatial learning abilities in males and females of the subterranean rodent Ctenomys talarum. Ethology Ecology and Evolution, 22, 101–108.CrossRefGoogle Scholar
  63. Matthews, M. H. (1987). Gender, home range and environmental cognition. Transactions of the Institute of British Geographers, 12(1), 43–56.CrossRefGoogle Scholar
  64. Melnick, D., Pearl, M., & Richard, A. (1984a). Male migration and inbreeding avoidance in wild rhesus monkeys. American Journal of Primatology, 7, 229–243.CrossRefGoogle Scholar
  65. Melnick, D., Jolly, C., & Kidd, K. (1984b). The genetics of a wild population of rhesus monkeys (macaca mulatta), I. Genetic variability within and between social groups. American Journal of Physical Anthropology, 63, 341–360.Google Scholar
  66. Miner, E. J., Gurven, M., Kaplan, H., & Gaulin, S. J. C. (2014). Sex difference in travel is concentrated in adolescence and tracks reproductive interests. Proceedings of the Royal Society of London B, 281, 20141476. doi: 10.1098/rspb.2014.1476.CrossRefGoogle Scholar
  67. Minta, S. C. (1993). Sexual differences in spatiotemporal interaction among badgers. Oecologia, 96, 402–409.CrossRefGoogle Scholar
  68. Moffat, S. D., Hampson, E., & Hatzipantelis, M. (1998). Navigation in a ‘virtual’ maze: sex differences and correlation with psychometric measures of spatial ability in humans. Evolution and Human Behavior, 19(2), 73–87.CrossRefGoogle Scholar
  69. Montello, D. R., Lovelace, K. L., Golledge, R. G., & Self, C. M. (1999). Sex-related differences and similarities in geographic and environmental spatial abilities. Annals of the Association of American Geographers, 89(3), 515–534.CrossRefGoogle Scholar
  70. Munroe, R. L., & Munroe, R. H. (1971). Effect of environmental experience on spatial ability in an East African society. The Journal of Social Psychology, 83(1), 15–22.CrossRefGoogle Scholar
  71. Nerlove, S. B., Munroe, R. H., & Munroe, R. L. (1971). Effect of environmental experience on spatial ability: a replication. The Journal of Social Psychology, 84(1), 3–10.CrossRefGoogle Scholar
  72. Pavey, C., Goodship, N., & Geiser, F. (2003). Home range and spatial organisation of rock-dwelling carnivorous marsupial, Pseudantechinus macdonnellensis. Wildlife Research, 30(2), 135–142.CrossRefGoogle Scholar
  73. Perdue, B., Snyder, R., Zhihe, Z., Marr, M. J., & Maple, T. (2011). Sex differences in spatial ability: a test of the range size hypothesis in the order Carnivora. Biology Letters, 7(3), 380–383.CrossRefGoogle Scholar
  74. Puts, D. A., McDaniel, M. A., Jordan, C. L., & Breedlove, S. M. (2008). Spatial ability and prenatal androgens: meta-analyses of congenital adrenal hyperplasia and digit ratio (2d:4d) studies. Archives of Sexual Behavior, 37(1), 100–111.CrossRefGoogle Scholar
  75. Resnick, S. M., Berenbaum, S. A., Gottesman, I. I., & Bouchard, T. J. (1986). Early hormonal influences on cognitive functioning in congenital adrenal hyperplasia. Developmental Psychology, 22, 191–198.CrossRefGoogle Scholar
  76. Rovet, J., & Netley, C. (1982). Processing deficits in Turner’s syndrome. Developmental Psychology, 18(1), 77–94.CrossRefGoogle Scholar
  77. Sandstrom, N. J., Kaufman, J., & Huettel, S. A. (1998). Males and females use different distal cues in a virtual environment navigation task. Cognitive Brain Research, 6(4), 351–360.CrossRefGoogle Scholar
  78. Saucier, D. M., Green, S. M., Leason, J., MacFadden, A., Bell, S., & Elias, L. J. (2002). Are sex differences in navigation caused by sexually dimorphic strategies or by differences in the ability to use the strategies? Behavioral Neuroscience, 116(3), 403–410.CrossRefGoogle Scholar
  79. Schug, M. G. (2015). Navigational style, parental restrictiveness, and spatial reasoning: Wayfinding anxiety and childhood experience in the Faroe Islands. Human Nature, 27(1). doi: 10.1007/s12110-015-9245-4.
  80. Sear, R., & Mace, R. (2008). Who keeps children alive? A review of the effects of kin on child survival. Evolution and Human Behavior, 29(1), 1–18.CrossRefGoogle Scholar
  81. Sellet, F., Greaves, R., & Yu, P. L. (Eds.). (2006). Archaeology and ethnoarchaeology of mobility. Gainesville: University Press of Florida.Google Scholar
  82. Sherry, D., & Hampson, E. (1997). Evolution and the hormonal control of sexually- dimorphic spatial abilities in humans. Trends in Cognitive Sciences, 1(2), 50–56.CrossRefGoogle Scholar
  83. Sherry, D. F., Forbes, M. R., Khurgel, M., & Ivy, G. O. (1993). Females have a larger hippocampus than males in the brood-parasitic brown-headed cowbird. Proceedings of the National Academy of Sciences of the United States of America, 90, 7839–7843.CrossRefGoogle Scholar
  84. Silverman, I., Choi, J., Mackewn, A., Fisher, M., Moro, J., & Olshansky, E. (2000). Evolved mechanisms underlying wayfinding: further studies on the hunter-gatherer theory of spatial sex differences. Evolution and Human Behavior, 21(3), 201–213.CrossRefGoogle Scholar
  85. Trumble, B. C., Gaulin, S. J. C., Dunbar, M. D., Kaplan, H., & Gurven, M. (2015). No sex or age difference in dead-reckoning ability among Tsimane forager-horticulturalists. Human Nature, 27(1). doi: 10.1007/s12110-015-9246-3.
  86. Vashro, L. (2015). Are sex differences in mobility all about mating? Paper presented at the Human Behavior and Evolution Society annual meeting, University of Missouri, Columbia MO.Google Scholar
  87. Vashro, L., & Cashdan, E. (2015). Spatial cognition, mobility, and reproductive success in northwestern Namibia. Evolution and Human Behavior, 36(2), 123–129.CrossRefGoogle Scholar
  88. Vashro, L., Padilla, L., & Cashdan, L. (2015). Sex differences in mobility and spatial cognition: a test of the fertility and parental care hypothesis in northwestern Namibia. Human Nature, 27(1). doi: 10.1007/s12110-015-9247-2.
  89. Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychological Bulletin, 117(2), 250–270.CrossRefGoogle Scholar
  90. Ward, S. L., Newcombe, N., & Overton, W. F. (1986). Turn left at the church, or three miles north: a study of direction giving and sex differences. Environment and Behavior, 18(2), 192–213.CrossRefGoogle Scholar
  91. Webley, P. (1981). Sex differences in home range and cognitive maps in eight-year old children. Journal of Environmental Psychology, 1, 293–302.CrossRefGoogle Scholar
  92. Whiting, B. B., & Edwards, C. P. (1992). Children of different worlds: The formation of social behavior. Cambridge: Harvard University Press.Google Scholar
  93. Williams, C. L., Barnett, A. L., & Meck, W. B. (1990). Organizational effects of early gonadal secretions on sexual differentiation in spatial memory. Behavioral Neuroscience, 104, 84–97.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of AnthropologyUniversity of UtahSalt Lake CityUSA
  2. 2.Department of AnthropologyUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations