Advertisement

Human Nature

, Volume 27, Issue 1, pp 51–67 | Cite as

No Sex or Age Difference in Dead-Reckoning Ability among Tsimane Forager-Horticulturalists

  • Benjamin C. Trumble
  • Steven J. C. Gaulin
  • Matt D. Dunbar
  • Hillard Kaplan
  • Michael Gurven
Article

Abstract

Sex differences in reproductive strategy and the sexual division of labor resulted in selection for and maintenance of sexual dimorphism across a wide range of characteristics, including body size, hormonal physiology, behavior, and perhaps spatial abilities. In laboratory tasks among undergraduates there is a general male advantage for navigational and mental-rotation tasks, whereas studies find female advantage for remembering item locations in complex arrays and the locations of plant foods. Adaptive explanations of sex differences in these spatial abilities have focused on patterns of differential mate search and routine participation in distinct subsistence behaviors. The few studies to date of spatial ability in nonindustrial populations practicing subsistence lifestyles, or across a wider age range, find inconsistent results. Here we examine sex- and age-based variation in one kind of spatial ability related to navigation, dead-reckoning, among Tsimane forager horticulturalists living in lowland Bolivia. Seventy-three participants (38 male) aged 6–82 years pointed a handheld global positioning system (GPS) unit toward the two nearest communities and the more distant market town. We find no evidence of sex differences in dead reckoning (p = 0.47), nor do we find any evidence of age-related decline in dead-reckoning accuracy (p = 0.28). Participants were significantly more accurate at pointing toward the market town than toward the two nearest villages despite its being significantly farther away than the two nearest communities. Although Tsimane do show sexual dimorphism in foraging tasks, Tsimane women have extensive daily and lifetime travel, and the local environment lacks directional cues that typically enhance male navigation. This study raises the possibility that greater similarity in mobility patterns because of overlapping subsistence strategies and activities may result in convergence of some male and female navigation abilities.

Keywords

Spatial ability Navigation Sexual dimorphism Tsimane Dead reckoning 

Notes

Grant Sponsorship

NIA R01AG024119-01, R56AG024119-06, R01AG024119-07

References

  1. Bagley, M. N., & Mokhtarian, P. L. (2002). The impact of residential neighborhood type on travel behavior: a structural equations modeling approach. Annals of Regional Science, 36(2), 279–297.CrossRefGoogle Scholar
  2. Barrett-Connor, E., Goodman-Gruen, D., & Patay, B. (1999). Endogenous sex hormones and cognitive function in older men 1. Journal of Clinical Endocrinology and Metabolism, 84(10), 3681–3685.Google Scholar
  3. Berry, J. W. (1966). Temne and Eskimo perceptual skills. International Journal of Psychology, 1(3), 207–229.CrossRefGoogle Scholar
  4. Berry, J. W. (1971). Ecological and cultural factors in spatial perceptual development. Canadian Journal of Behavioural Science/Revue Canadienne des Sciences du Comportement, 3(4), 324–336.CrossRefGoogle Scholar
  5. Berry, J. W. (1976). Human ecology and cognitive style: Comparative studies in cultural and psychological adaptation. Cross-cultural Research and Methodology Series III. Oxford: Sage.Google Scholar
  6. Blurton Jones, N. G., Hawkes, K., & Draper, P. (1994). Differences between Hadza and !Kung children’s work: Original affluence or practical reason? In E. S. Burch & L. Ellana (Eds.), Key issues in hunter gatherer research (pp. 189–215). Oxford: Berg.Google Scholar
  7. Cashdan, E., Marlowe, F. W., Crittenden, A., Porter, C., & Wood, B. M. (2012). Sex differences in spatial cognition among Hadza foragers. Evolution and Human Behavior, 33(4), 274–284.CrossRefGoogle Scholar
  8. Cashdan, E., Kramer, K. L., Davis, H. E., Padilla, L., & Greaves, R. D. (2015). Mobility and navigation among the Yucatec Maya: sex differences reflect parental investment, not mating competition. Human Nature, 27(1), in press.Google Scholar
  9. Chai, X. J., & Jacobs, L. F. (2009). Sex differences in directional cue use in a virtual landscape. Behavioral Neuroscience, 123(2), 276–283.CrossRefGoogle Scholar
  10. Clint, E. K., Sober, E., GarlandJr, T., & Rhodes, J. S. (2012). Male superiority in spatial navigation: adaptation or side effect? Quarterly Review of Biology, 87(4), 289–313.CrossRefGoogle Scholar
  11. Coluccia, E., & Louse, G. (2004). Gender differences in spatial orientation: a review. Journal of Environmental Psychology, 24(3), 329–340.CrossRefGoogle Scholar
  12. Cutmore, T. R. H., Hine, T. J., Maberly, K. J., Langford, N. M., & Hawgood, G. (2000). Cognitive and gender factors influencing navigation in a virtual environment. International Journal of Human-Computer Studies, 53(2), 223–249.CrossRefGoogle Scholar
  13. Dabbs, J. M., Jr., Chang, E. L., Strong, R. A., & Milun, R. (1998). Spatial ability, navigation strategy, and geographic knowledge among men and women. Evolution and Human Behavior, 19(2), 89–98.CrossRefGoogle Scholar
  14. Duff, S. J., & Hampson, E. (2000). A beneficial effect of estrogen on working memory in postmenopausal women taking hormone replacement therapy. Hormones and Behavior, 38(4), 262–276.CrossRefGoogle Scholar
  15. Estalrrich, A., & Rosas, A. (2015). Division of labor by sex and age in Neandertals: an approach through the study of activity-related dental wear. Journal of Human Evolution, 80, 51–63.CrossRefGoogle Scholar
  16. Estioko-Griffin, A. (1986). Daughters of the forest. Agta women of the Philippines hunt large game animals and still raise their children. Natural History, 95(5), 36–43.Google Scholar
  17. Finney, B. (1995). A role for magnetoreception in human navigation? Current Anthropology, 36(3), 500–506.CrossRefGoogle Scholar
  18. Gagnon, K. T., Cashdan, E. A., Stefanucci, J. K., & Creem-Regehr, S. H. (2015). Sex differences in exploration behavior and the relationship to harm avoidance. Human Nature 27(1). doi: 10.1007/s12110-015-9248-1.
  19. Gaulin, S. J. C. (1992). Evolution of sex difference in spatial ability. American Journal of Physical Anthropology, 35(S15), 125–151.CrossRefGoogle Scholar
  20. Gaulin, S. J., & FitzGerald, R. W. (1988). Home-range size as a predictor of mating systems in Microtus. Journal of Mammalogy, 69, 311–319.CrossRefGoogle Scholar
  21. Geary, D. C. (1995). Sexual selection and sex differences in spatial cognition. Learning and Individual Differences, 7(4), 289–301.CrossRefGoogle Scholar
  22. Gurven, M. (2004). Economic games among the Amazonian Tsimane: exploring the roles of market access, costs of giving, and cooperation on pro-social game behavior. Experimental Economics, 7(1), 5–24.CrossRefGoogle Scholar
  23. Gurven, M., Kaplan, H., & Gutierrez, M. (2006). How long does it take to become a proficient hunter? Implications for the evolution of extended development and long life span. Journal of Human Evolution, 51(5), 454–470.CrossRefGoogle Scholar
  24. Gurven, M., Kaplan, H., & Zelada Supa, A. (2007). Mortality experience of Tsimane Amerindians of Bolivia: regional variation and temporal trends. American Journal of Human Biology, 19, 376–398.CrossRefGoogle Scholar
  25. Gurven, M., Winking, J., Kaplan, H., von Rueden, C., & McAllister, L. (2009). A bioeconomic approach to marriage and the sexual division of labor. Human Nature, 20(2), 151–183.CrossRefGoogle Scholar
  26. Hartshorne, J. K., & Germine, L. T. (2015). When does cognitive functioning peak? The asynchronous rise and fall of different cognitive abilities across the life span. Psychological Science, 26(4), 433–443.CrossRefGoogle Scholar
  27. Heinze, S., & Reppert, S. M. (2011). Sun compass integration of skylight cues in migratory monarch butterflies. Neuron, 69(2), 345–358.CrossRefGoogle Scholar
  28. Hill, K., & Hurtado, A. M. (1996). Ache life history: The ecology and demography of a foraging people. Hawthorne: Aldine de Gruyter.Google Scholar
  29. Hill, K., Hurtado, A. M., & Walker, R. S. (2007). High adult mortality among Hiwi hunter-gatherers: implications for human evolution. Journal of Human Evolution, 52(4), 443–454.CrossRefGoogle Scholar
  30. Hurtado, A., Hawkes, K., Hill, K., & Kaplan, H. (1985). Female subsistence strategies among Ache hunter-gatherers of eastern Paraguay. Human Ecology, 13(1), 1–28.CrossRefGoogle Scholar
  31. Jones, C. M., Braithwaite, V. A., & Healy, S. D. (2003). The evolution of sex differences in spatial ability. Behavioral Neuroscience, 117(3), 403.CrossRefGoogle Scholar
  32. Kirasic, K. C., Allen, G. L., & Siegel, A. W. (1984). Expression of configurational knowledge of large-scale environments: students' performance of cognitive tasks. Environment and Behavior, 16(6), 687–712.CrossRefGoogle Scholar
  33. Krasnow, M. M., Truxaw, D., Gaulin, S. J., New, J., Ozono, H., Uono, S., Ueno, T., & Minemoto, K. (2011). Cognitive adaptations for gathering-related navigation in humans. Evolution and Human Behavior, 32(1), 1–12.CrossRefGoogle Scholar
  34. Kruger, D. J., & Nesse, R. M. (2006). An evolutionary life-history framework for understanding sex differences in human mortality rates. Human Nature, 17(1), 74–97.CrossRefGoogle Scholar
  35. Lassek, W. D., & Gaulin, S. J. C. (2009). Costs and benefits of fat-free muscle mass in men: relationship to mating success, dietary requirements, and native immunity. Evolution and Human Behavior, 30(5), 322–328.CrossRefGoogle Scholar
  36. Maccoby, E. E., & Jacklin, C. N. (1974). The psychology of sex differences. Palo Alto: Stanford University Press.Google Scholar
  37. MacDonald, D. H., & Hewlett, B. S. (1999). Reproductive interests and forager mobility 1. Current Anthropology, 40(4), 501–524.Google Scholar
  38. Malinowski, J. C., & Gillespie, W. T. (2001). Individual differences in performance on a large-scale, real-world wayfinding task. Journal of Environmental Psychology, 21(1), 73–82.CrossRefGoogle Scholar
  39. Martin, M. A., Lassek, W. D., Gaulin, S. J., Evans, R. W., Woo, J. G., Geraghty, S. R., Davidson, B. S., Morrow, A. L., Kaplan, H. S., & Gurven, M. D. (2012). Fatty acid composition in the mature milk of Bolivian forager-horticulturalists: controlled comparisons with a US sample. Maternal & Child Nutrition, 8(3), 404–418.CrossRefGoogle Scholar
  40. Miller, D. I., & Halpern, D. F. (2014). The new science of cognitive sex differences. Trends in Cognitive Sciences, 18(1), 37–45.CrossRefGoogle Scholar
  41. Miner, E. J., Gurven, M., Kaplan, H., & Gaulin, S. J. C. (2014). Sex difference in travel is concentrated in adolescence and tracks reproductive interests. Proceedings of the Royal Society of London B, 281, 20141476. doi: 10.1098/rspb.2014.1476.CrossRefGoogle Scholar
  42. Montello, D. R., & Pick, H. L. (1993). Integrating knowledge of vertically aligned large-scale spaces. Environment and Behavior, 25(3), 457–484.CrossRefGoogle Scholar
  43. Neave, N., Hamilton, C., Hutton, L., Tildesley, N., & Pickering, A. T. (2005). Some evidence of a female advantage in object location memory using ecologically valid stimuli. Human Nature, 16(2), 146–163.CrossRefGoogle Scholar
  44. New, J., Krasnow, M. M., Truxaw, D., & Gaulin, S. J. C. (2007). Spatial adaptations for plant foraging: women excel and calories count. Proceedings of the Royal Society of London B, 274(1626), 2679–2684.CrossRefGoogle Scholar
  45. Noss, A. J., & Hewlett, B. S. (2001). The contexts of female hunting in Central Africa. American Anthropologist, 103(4), 1024–1040.CrossRefGoogle Scholar
  46. Plavcan, J. M. (2012). Sexual size dimorphism, canine dimorphism, and male-male competition in primates. Human Nature, 23(1), 45–67.CrossRefGoogle Scholar
  47. Quinn, T. P. (1980). Evidence for celestial and magnetic compass orientation in lake migrating sockeye salmon fry. Journal of Comparative Physiology, 137(3), 243–248.CrossRefGoogle Scholar
  48. Reilly, D. (2012). Gender, culture, and sex-typed cognitive abilities. PloS One, 7(7), e39904.CrossRefGoogle Scholar
  49. Rosenthal, R., & Rubin, D. B. (1982). Further meta-analytic procedures for assessing cognitive gender differences. Journal of Educational Psychology, 74(5), 708.CrossRefGoogle Scholar
  50. Ruff, C. (2002). Variation in human body size and shape. Annual Review of Anthropology, 31, 211–232.CrossRefGoogle Scholar
  51. Salthouse, T. A. (2010). Selective review of cognitive aging. Journal of the International Neuropsychological Society, 16(05), 754–760.CrossRefGoogle Scholar
  52. Saucier, D. M., Green, S. M., Leason, J., MacFadden, A., Bell, S., & Elias, L. J. (2002). Are sex differences in navigation caused by sexually dimorphic strategies or by differences in the ability to use the strategies? Behavioral Neuroscience, 116(3), 403.CrossRefGoogle Scholar
  53. Schug, M. G. (2015). Geographical cues and developmental exposure: navigational style, wayfinding anxiety, and childhood experience in the Faroe Islands. Human Nature 27(1). doi: 10.1007/s12110-015-9245-4.
  54. Sherry, D. F., & Hampson, E. (1997). Evolution and the hormonal control of sexually-dimorphic spatial abilities in humans. Trends in Cognitive Sciences, 1(2), 50–56.CrossRefGoogle Scholar
  55. Silverman, I., & Eals, M. (1992). Sex differences in spatial abilities: Evolutionary theory and data. In J. H. Barkow, L. Cosmides, & J. Tooby (Eds.), The adapted mind: Evolutionary psychology and the generation of culture (pp. 533–553). New York: Oxford University Press.Google Scholar
  56. Silverman, I., Choi, J., Mackewn, A., Fisher, M., Moro, J., & Olshansky, E. (2000). Evolved mechanisms underlying wayfinding: further studies on the hunter-gatherer theory of spatial sex differences. Evolution and Human Behavior, 21(3), 201–213.CrossRefGoogle Scholar
  57. Singh-Manoux, A., Kivimaki, M., Glymour, M. M., Elbaz, A., Berr, C., Ebmeier, K. P., Ferrie, J. E., & Dugravot, A. (2012). Timing of onset of cognitive decline: results from Whitehall II prospective cohort study. British Medical Journal, 344, d7622.CrossRefGoogle Scholar
  58. Stieglitz, J., Blackwell, A. D., Gutierrez, R. Q., Linares, E. C., Gurven, M., & Kaplan, H. (2012). Modernization, sexual risk-taking, and gynecological morbidity among Bolivian forager-horticulturalists. Plos One, 7(12), e50384.CrossRefGoogle Scholar
  59. Stieglitz, J., Jaeggi, A. V., Blackwell, A. D., Trumble, B. C., Gurven, M., & Kaplan, H. (2014). Work to live and live to work: productivity, transfers, and psychological well-being in adulthood and old age. In M. Weinstein & M. Lane (Eds.), Sociality, hierarchy, health: Comparative biodemography (pp. 197–221). Washington DC: The National Academies Press.Google Scholar
  60. Sugiyama, M. S., Sugiyama, L. S., Slingerland, E., & Collard, M. (2011). ‘Once the child is lost he dies’: Monster stories vis-a-vis the problem of errant children. In E. Slingerland & M. Collard (Eds.), Creating consilience: Integrating the sciences and the humanities (pp. 351–371). New York: Oxford University Press.Google Scholar
  61. Trumble, B. C., Cummings, D., von Rueden, C., O’Connor, K. A., Smith, E. A., Gurven, M., & Kaplan, H. (2012). Physical competition increases testosterone among Amazonian forager-horticulturalists: a test of the ‘challenge hypothesis’. Proceedings of the Royal Society B: Biological Sciences, 279(1739), 2907–2912.CrossRefGoogle Scholar
  62. Trumble, B. C., Smith, E. A., O’Connor, K. A., Kaplan, H. S., & Gurven, M. D. (2014a). Successful hunting increases testosterone and cortisol in a subsistence population. Proceedings of the Royal Society B: Biological Sciences, 281(1776), 20132876.CrossRefGoogle Scholar
  63. Trumble, B. C., Stieglitz, J., Thompson, M. E., Fuerstenberg, E., Kaplan, H., & Gurven, M. (2014b). Testosterone and male cognitive performance in Tsimane forager-horticulturalists. American Journal of Human Biology, 27(4), 582–586.CrossRefGoogle Scholar
  64. Vashro, L., & Cashdan, E. (2015). Spatial cognition, mobility, and reproductive success in northwestern Namibia. Evolution and Human Behavior, 36(2), 123–129.CrossRefGoogle Scholar
  65. Vashro L, Padilla L, and Cashdan E. 2015. Sex diferences in mobility and spatial cognition: a test of the fertility and parental care hypothesis in northwestern Namibia. Human Nature 27(1). doi: 10.1007/s12110-015-9247-2.
  66. Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychological Bulletin, 117(2), 250–270.CrossRefGoogle Scholar
  67. Washburn, S., & Lancaster, C. (1968). The evolution of hunting. In R. Lee & I. Devore (Eds.), Man the hunter (pp. 293–303). Chicago: Aldine.Google Scholar
  68. Williams, C. L., & Meck, W. H. (1991). The organizational effects of gonadal steroids on sexually dimorphic spatial ability. Psychoneuroendocrinology, 16(1–3), 155–176.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Benjamin C. Trumble
    • 1
    • 4
  • Steven J. C. Gaulin
    • 1
  • Matt D. Dunbar
    • 2
  • Hillard Kaplan
    • 3
  • Michael Gurven
    • 1
  1. 1.Integrative Anthropological Sciences UnitUniversity of California Santa BarbaraSanta BarbaraUSA
  2. 2.Center for Studies in Demography and EcologyUniversity of WashingtonSeattleUSA
  3. 3.Department of AnthropologyUniversity of New MexicoAlbuquerqueUSA
  4. 4.Institute for Social, Behavioral, and Economic ResearchUniversity of California, Santa BarbaraSanta BarbaraUSA

Personalised recommendations