Human Nature

, Volume 24, Issue 4, pp 461–475 | Cite as

Masculine Men Articulate Less Clearly

  • Vera KempeEmail author
  • David A. Puts
  • Rodrigo A. Cárdenas


In previous research, acoustic characteristics of the male voice have been shown to signal various aspects of mate quality and threat potential. But the human voice is also a medium of linguistic communication. The present study explores whether physical and vocal indicators of male mate quality and threat potential are linked to effective communicative behaviors such as vowel differentiation and use of more salient phonetic variants of consonants. We show that physical and vocal indicators of male threat potential, height and formant position, are negatively linked to vowel space size, and that height and levels of circulating testosterone are negatively linked to the use of the aspirated variant of the alveolar stop consonant /t/. Thus, taller, more masculine men display less clarity in their speech and prefer phonetic variants that may be associated with masculine attributes such as toughness. These findings suggest that vocal signals of men’s mate quality and/or dominance are not confined to the realm of voice acoustics but extend to other aspects of communicative behavior, even if this means a trade-off with speech patterns that are considered communicatively advantageous, such as clarity and indexical cues to higher social class.


Vowel space Allophones Sex differences 


  1. Adank, P., Smits, R., & van Hout, R. (2004). A comparison of vowel normalization procedures for language variation research. Journal of the Acoustical Society of America, 116, 3099–3107. doi: 10.1121/1.1795335.CrossRefGoogle Scholar
  2. Boersma, P., Weenink, D. (2011). Praat: Doing phonetics by computer [Computer program] Version 5316, retrieved May 30, 2012 from
  3. Bradlow, A., Torretta, G., & Pisoni, D. (1996). Intelligibility of normal speech I: global and fine-grained acoustic-phonetic talker characteristics. Speech Communication, 20, 255–272. doi: 10.1016/S0167-6393(96)00063-5.CrossRefGoogle Scholar
  4. Bruckert, L., Lienard, J. S., Lacroix, A., Kreutzer, M., & Leboucher, G. (2006). Women use voice parameters to assess men’s characteristics. Proceedings of the Royal Society B-Biological Sciences, 273, 83–89. doi: 10.1098/rspb.2005.3265.CrossRefGoogle Scholar
  5. Buss, A. H., & Perry, M. (1992). The aggression questionnaire. Journal of Personality and Social Psychology, 63, 452–459. doi: 10.1037//0022-3514.63.3.452.CrossRefGoogle Scholar
  6. Childers, D. G., & Wu, K. (1991). Gender recognition from speech. Part II: fine analysis. Journal of the Acoustical Society of America, 90, 1841–1856. doi: 10.1121/1.401664.CrossRefGoogle Scholar
  7. Collins, S. (2000). Men’s voices and women’s choices. Animal Behaviour, 60, 773–780. doi: 10.1006/anbe.2000.1523.CrossRefGoogle Scholar
  8. Dabbs, J. M., & Mallinger, A. (1999). High testosterone levels predict low voice pitch among men. Personality and Individual Differences, 27, 801–804. doi: 10.1016/S0191-8869(98)00272-4.CrossRefGoogle Scholar
  9. Daly, N., & Warren, P. (2001). Pitching it differently in New Zealand English: speaker sex and intonation patters. Journal of Sociolinguistics, 5, 85–96. doi: 10.1111/1467-9481.00139.CrossRefGoogle Scholar
  10. Eddington, D., & Channer, C. (2010). American English has Open image in new window a Open image in new window of glottal stops: social diffusion and linguistic motivation. American Speech, 85, 338–351. doi: 10.1215/00031283-2010-019.CrossRefGoogle Scholar
  11. Evans, S., Neave, N., & Wakelin, D. (2006). Relationships between vocal characteristics and body size and shape in human males: an evolutionary explanation for a deep male voice. Biological Psychology, 72, 160–163. doi: 10.1016/j.biopsycho.2005.09.003.CrossRefGoogle Scholar
  12. Evans, S., Neave, N., Wakelin, D., & Hamilton. (2008). The relationship between testosterone and vocal frequencies in human males. Physiology and Behavior, 93, 783–788. doi: 10.1016/j.physbeh.2007.11.033.CrossRefGoogle Scholar
  13. Fant, G. (1966). A note on vocal tract size factors and non-uniform F-pattern scalings. STL- Quarterly Progress and Status Report, 4, 22–30.Google Scholar
  14. Fant, G. (1975). Non-uniform vowel normalization. STL-Quarterly Progress and Status Report, 2, 1–19.Google Scholar
  15. Fernald, A., Taeschner, T., Dunn, J., Papousek, M., Boysson-Bardies, B., & Fukui, I. (1989). A cross-language study of prosodic modifications in mothers’ and fathers’ speech to preverbal infants. Journal of Child Language, 16, 477–501. doi: 10.1017/S0305000900010679.CrossRefGoogle Scholar
  16. Fitch, T. W. (1994). Vocal tract length perception and the evolution of language. Unpublished Ph.D. thesis, Brown University.Google Scholar
  17. Fitch, T. W. (1997). Vocal tract length and formant frequency dispersion correlate with body size in rhesus macaques. Journal of the Acoustical Society of America, 102, 1213–1222. doi: 10.1121/1.421048.CrossRefGoogle Scholar
  18. Fitch, T. W. (2000). Evolution of speech: a comparative review. Trends in Cognitive Science, 4, 258–267. doi: 10.1016/S1364-6613(00)01494-7.CrossRefGoogle Scholar
  19. Fitch, T. W., & Giedd, J. (1999). Morphology and development of the human vocal tract: a study using magnetic resonance imaging. Journal of the Acoustical Society of America, 106, 1511–1522. doi: 10.1121/1.427148.CrossRefGoogle Scholar
  20. Foulkes, P., Docherty, G., & Watt, D. (2005). Phonological variation in child-directed speech. Language, 81, 177–206. doi: 10.1353/lan.2005.0018.CrossRefGoogle Scholar
  21. Gonzáles, J. (2004). Formant frequencies and body size of speaker: a weak relationship in adult humans. Journal of Phonetics, 32, 277–287. doi: 10.1016/S0095-4470(03)00049-4.CrossRefGoogle Scholar
  22. Henrich, J., & Gil-White, F. J. (2001). The evolution of prestige: freely conferred deference as a mechanism for enhancing the benefits of cultural transmission. Evolution and Human Behavior, 21, 165–196. doi: 10.1016/S1090-5138(00)00071-4.CrossRefGoogle Scholar
  23. Kempe, V. (2009). Child-directed speech prosody in adolescents: relationship to 2D:4D, empathy, and attitudes towards children. Personality and Individual Differences, 47, 610–615.CrossRefGoogle Scholar
  24. Klofstad, C. A., Anderson, R. C., & Peters, S. (2012). Sounds like a winner: voice pitch influences perception of leadership capacity in both men and women. Proceedings of the Royal Society B-Biological Sciences, 279, 2698–2704. doi: 10.1098/rspb.2012.0311.CrossRefGoogle Scholar
  25. Kuhl, P. K., Andruski, J. E., Christovich, I. A., Christovich, L. A., Kozhevnikova, E. V., Ryskina, V. L., Stolyarova, E. I., Sundberg, U., & Lacerda, F. (1997). Cross-language analysis of phonetic units in language addressed to infants. Science, 277, 684–686. doi: 10.1126/science.277.5326.684.CrossRefGoogle Scholar
  26. Künzel, H. J. (1989). How well does average fundamental frequency correlate with speaker height and weight? Phonetica, 46, 117–125. doi: 10.1159/000261832.CrossRefGoogle Scholar
  27. Kwon, H. (2010). Gender difference in speech intelligibility using speech intelligibility tests and acoustic analyses. Journal of Advanced Prostodontics, 2, 71–76. doi: 10.4047/jap.2010.2.3.71.CrossRefGoogle Scholar
  28. Ladefoged, P., & Broadbent, D. (1957). Information conveyed by vowels. Journal of the Acoustical Society of America, 29, 98–104. doi: 10.1121/1.1908694.CrossRefGoogle Scholar
  29. Lass, N. J., & Brown, W. S. (1978). Correlational study of speakers’ heights, weights, body surface areas, and speaking fundamental frequencies. Journal of the Acoustical Society of America, 63, 1218–1220. doi: 10.1121/1.381808.CrossRefGoogle Scholar
  30. Lindblom, B. (1990). Explaining phonetic variation: a sketch of the H and H theory. In W. J. Hardcastle & A. Marchal (Eds.), Speech production and speech modelling (pp. 403–439). Amsterdam: Kluwer. doi: 10.1007/978-94-009-2037-8_16.CrossRefGoogle Scholar
  31. Liu, H.-M., Kuhl, P. K., & Tsao, F.-M. (2003). An association between mothers’ speech clarity and infant speech discrimination skills. Developmental Science, 6, F1–F10. doi: 10.1111/1467-7687.00275.CrossRefGoogle Scholar
  32. Macaulay, R. K. S. (1977). Language, social class, and education: A Glasgow study. Edinburgh: The University Press.Google Scholar
  33. Milroy, J., Milroy, L., Hartley, S., & Walshaw, D. (1994). Glottal stops and tyneside glottalization: competing patterns of variation and change in British English. Language Variation and Change, 6, 327–357. doi: 10.1017/S095439450000171X.CrossRefGoogle Scholar
  34. Moffat, S. D., & Hampson, E. (1996). Salivary testosterone levels in left- and right-handed adults. Neuropsychologia, 34, 225–233. doi: 10.1016/0028-3932(95)00090-9.CrossRefGoogle Scholar
  35. O’Connor, J. J. M., Re, D. E., & Feinberg, D. R. (2011). Voice pitch influences perceptions of sexual infidelity. Evolutionary Psychology, 9, 64–78.Google Scholar
  36. Perrett, D. I., Lee, K. J., Penton-Voak, I., Rowland, D., Yoshikawa, S., Burt, D. M., et al. (1998). Effects of sexual dimorphism on facial attractiveness. Nature, 394, 884–887. doi: 10.1038/29772.CrossRefGoogle Scholar
  37. Pierrehumbert, J. B., Bent, T., Munson, B., Bradlow, A. R., & Bailey, M. J. (2004). The influence of sexual orientation on vowel production (L). Journal of the Acoustical Society of America, 116, 1905–1908. doi: 10.1121/1.1788729.CrossRefGoogle Scholar
  38. Puts, D. A. (2005). Mating context and menstrual phase affect female preferences for male voice pitch. Evolution and Human Behavior, 26, 388–397. doi: 10.1016/j.evolhumbehav.2005.03.001.CrossRefGoogle Scholar
  39. Puts, D. A., Gaulin, S. J. C., & Verdolini, K. (2006). Dominance and the evolution of sexual dimorphism in human voice pitch. Evolution and Human Behavior, 27, 283–296. doi: 10.1016/j.evolhumbehav.2005.11.003.CrossRefGoogle Scholar
  40. Puts, D. A., Hodges, C., Cárdenas, R. A., & Gaulin, S. J. C. (2007). Men’s voices as dominance signals: vocal fundamental and formant frequencies influence dominance attributions among men. Evolution and Human Behavior, 28, 340–344. doi: 10.1016/j.evolhumbehav.2007.05.002.CrossRefGoogle Scholar
  41. Puts, D. A., Apicella, C. L., & Cárdenas, R. A. (2012). Masculine voices signal men’s threat potential in forager and industrial societies. Proceedings of the Royal Society B-Biological Sciences, 279, 601–609. doi: 10.1098/rspb.2011.0829.CrossRefGoogle Scholar
  42. Rendall, D., Kollias, S., Ney, C., & Lloyd, P. (2005). Pitch (F0) and formant profiles of human vowels and vowel-like baboon grunts: the role of vocalizer body size and voice-acoustic allometry. Journal of the Acoustical Society of America, 117, 944–955. doi: 10.1121/1.1848011.CrossRefGoogle Scholar
  43. Sell, A., Bryant, G. A., Cosmides, L., Tooby, J., Sznycer, D., von Rueden, C., Krauss, A., & Gurven, M. (2010). Adaptations in humans for assessing physical strength from the voice. Proceedings of the Royal Society B-Biological Sciences, 277, 3509–3518. doi: 10.1098/rspb.2010.0769.CrossRefGoogle Scholar
  44. Simpson, A. P. (2001). Dynamic consequences of differences in male and female vocal tract dimensions. Journal of the Acoustical Society of America, 109, 2153–2164. doi: 10.1121/1.1356020.CrossRefGoogle Scholar
  45. Simpson, A. P. (2009). Phonetic differences between male and female speech. Language and Linguistics Compass, 3, 621–640. doi: 10.1111/j.1749-818X.2009.00125.x.CrossRefGoogle Scholar
  46. Tigue, C. C., Borak, D. J., O’Connor, J. J. M., Schandl, C., & Feinberg, D. R. (2012). Voice pitch influences voting behaviour. Evolution and Human Behavior, 33, 210–216. doi: 10.1016/j.evolhumbehav.2011.09.004.CrossRefGoogle Scholar
  47. Trudgill, P. (1974). The social differentiation of English in Norwich. Cambridge: Cambridge University Press.Google Scholar
  48. Trudgill, P. (1986). Dialects in contact. Oxford: Blackwell.Google Scholar
  49. Van Dommelen, W. A., & Moxness, B. H. (1995). Acoustic parameters in speaker height and weight identification: sex-specific behaviour. Language and Speech, 38, 267–287.Google Scholar
  50. Wadnerkar, M. B., Cowell, P. E., & Whiteside, S. P. (2006). Speech across the menstrual cycle: a replication and extension study. Neuroscience Letters, 408, 21–24. doi: 10.1016/j.neulet.2006.07.032.CrossRefGoogle Scholar
  51. Wang, C., Plymate, S., Nieschlag, E., & Paulsen, C. A. (1981). Salivary testosterone in men: further evidence of a direct correlation with free serum testosterone. Journal of Clinical Endocrinology and Metabolism, 53, 1021–1024. doi: 10.1210/jcem-53-5-1021.CrossRefGoogle Scholar
  52. Whiteside, S. P., & Marshall, J. (2001). Developmental trends in Voice Onset Time: some evidence for sex differences. Phonetica, 58, 196–210. doi: 10.1159/000056199.CrossRefGoogle Scholar
  53. Whiteside, S. P., Hanson, A., & Cowell, P. E. (2004a). Hormones and temporal components of speech: sex differences and effects of menstrual cyclicity on speech. Neuroscience Letters, 367, 44–47. doi: 10.1016/j.neulet.2004.05.076.CrossRefGoogle Scholar
  54. Whiteside, S. P., Henry, L., & Dobbin, R. (2004b). Sex differences in voice onset time: a developmental study of phonetic context effects in British English. Journal of the Acoustical Society of America, 116, 1179–1183. doi: 10.1121/1.1768256.CrossRefGoogle Scholar
  55. Wolff, S. E., & Puts, D. A. (2010). Vocal masculinity is a robust dominance signal in men. Behavioral Ecology and Sociobiology, 64, 1673–1683. doi: 10.1007/s00265-010-0981-5.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Vera Kempe
    • 1
    Email author
  • David A. Puts
    • 2
  • Rodrigo A. Cárdenas
    • 2
  1. 1.University of Abertay DundeeDundeeUK
  2. 2.Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations