Human Nature

, 22:327 | Cite as

Adrenarche and Middle Childhood

  • Benjamin C. CampbellEmail author


Middle childhood, the period from 6 to 12 years of age, is defined socially by increasing autonomy and emotional regulation, somatically by the development of anatomical structures for subsistence, and endocrinologically by adrenarche, the adrenal production of dehydroepiandrosterone (DHEA). Here I suggest that DHEA plays a key role in the coordinated development of the brain and body beginning with middle childhood, via energetic allocation. I argue that with adrenarche, increasing levels of circulating DHEA act to down-regulate the release of glucose into circulation and hence limit the supply of glucose which is needed by the brain for synaptogenesis. Furthermore, I suggest the antioxidant properties of DHEA may be important in maintaining synaptic plasticity throughout middle childhood within slow-developing areas of the cortex, including the insula, thamalus, and anterior cingulate cortex. In addition, DHEA may play a role in the development of body odor as a reliable social signal of behavioral changes associated with middle childhood.


Middle childhood Adrenarche DHEA Brain Development 



The development of the ideas presented here owes much to discussion with many of my colleagues and students. I especially want to thank Jennifer Danzy and J. D. Pampush for reading an earlier version of this manuscript. I also want to thank Peter Gray for his thoughtful encouragement. Finally, I want to thank Jane Lancaster for her patience. Of course, any mistakes are my own.


  1. Albrecht, J., Demmel, M., Schöpf, V., Kleemann, A. M., Kopietz, R., May, J., et al. (2011). Smelling chemosensory signals of males in anxious versus nonanxious condition increases state anxiety of female subjects. Chemical Senses, 36, 19–27.Google Scholar
  2. Anzai, N., Kanai, Y., & Endou, H. (2006). Organic anion transporter family: current knowledge. Journal of Pharmacological Science, 100, 411–426.Google Scholar
  3. Aoki, K., Kikuchi, T., Mukasa, K., Ito, S., Nakajima, A., Satoh, S., et al. (2000). Dehydroepiandrosterone suppresses elevated hepatic glucose-6-phosphatase mRNA level in C57BL/KsJ-db/db mice: comparison with troglitazone. Endocrine Journal, 47, 799–804.Google Scholar
  4. Aoki, K., Taniguchi, H., Ito, Y., Satoh, S., Nakamura, S., Muramatsu, K., et al. (2004). Dehydroepiandrosterone decreases elevated hepatic glucose production in C57BL/KsJ-db/db mice. Life Sciences, 74, 3075–84.Google Scholar
  5. Auchus, R. J., & Rainey, W. E. (2004). Adrenarche—physiology, biochemistry and human disease. Clinical Endocrinology (Oxford), 60, 288–96.Google Scholar
  6. Basu, R., Dalla Man, C., Campioni, M., Basu, A., Nair, K. S., Jensen, M. D., et al. (2007). Two years of treatment with dehydroepiandrosterone does not improve insulin secretion, insulin action, or postprandial glucose turnover in elderly men or women. Diabetes, 56, 753–66.Google Scholar
  7. Benfield, L. L., Fox, K. R., Peters, D. M., Blake, H., Rogers, I., Grant, C., et al. (2008). Magnetic resonance imaging of abdominal adiposity in a large cohort of British children. International Journal of Obesity (London), 32, 91–99.Google Scholar
  8. Biason-Lauber, A., Zachmann, M., & Schoenle, E. J. (2000). Effect of leptin on CYP17 enzymatic activities in human adrenal cells: new insight in the onset of adrenarche. Endocrinology, 141, 1446–54.Google Scholar
  9. Binder, G., Weber, S., Ehrismann, M., Zaiser, N., Meisner, C., Ranke, M. B., et al. (2009). Effects of dehydroepiandrosterone therapy on pubic hair growth and psychological well-being in adolescent girls and young women with central adrenal insufficiency: a double-blind, randomized, placebo-controlled phase III trial. Journal of Clinical Endocrinology and Metabolism, 94, 1182–90.Google Scholar
  10. Blankenstein, R., Cleaton-Jones, P. E., Luk, K. M., & Fatti, L. P. (1990). The onset of eruption of the permanent dentition amongst South African black children. Archives of Oral Biology, 35, 225–8.Google Scholar
  11. Boes, A. D., Tranel, D., Anderson, S. W., & Nopoulos, P. (2008). Right anterior cingulate: a neuroanatomical correlate of aggression and defiance in boys. Behavioral Neuroscience, 122, 677–84.Google Scholar
  12. Bogin, B. (1999). Patterns of human growth (2nd ed.). New York: Cambridge University Press.Google Scholar
  13. Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I an evolutionary-developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17, 271–301.Google Scholar
  14. Campbell, B. C. (2006). Adrenarche and the evolution of human life history. American Journal of Human Biology, 18, 569–589.Google Scholar
  15. Campbell, B. C., Prossinger, H., & Mbzivo, M. (2005). Timing of pubertal maturation and the onset of sexual behavior among Zimbabwe school boys. Archives of Sexual Behavior, 34, 505–16.Google Scholar
  16. Caviness, V. S., Jr., Kennedy, D. N., Richelme, C., Rademacher, J., & Filipek, P. A. (1996). The human brain age 7-11 years: a volumetric analysis based on magnetic resonance images. Cerebral Cortex, 6, 726–36.Google Scholar
  17. Casey, B. J., Tottenham, N., Liston, C., & Durston, S. (2005). Imaging the developing brain: what have we learned about cognitive development? Trends in Cognitive Science, 9, 104–10.Google Scholar
  18. Chiao, J. Y., Mathur, V. A., Harada, T., & Lipke, T. (2009). Neural basis of preference for human social hierarchy versus egalitarianism. Annals of the New York Academy of Sciences, 1167, 174–81.Google Scholar
  19. Charalampopoulos, I., Dermitzaki, E., Vardouli, L., Tsatsanis, C., Stournaras, C., Margioris, A. N., et al. (2005). Dehydroepiandrosterone sulfate and allopregnanolone directly stimulate catecholamine production via induction of tyrosine hydroxylase and secretion by affecting actin polymerization. Endocrinology, 146, 3309–18.Google Scholar
  20. Charalampopoulos, I., Tsatsanis, C., Dermitzaki, E., Alexaki, V. I., Castanas, E., Margioris, A. N., et al. (2004). Dehydroepiandrosterone and allopregnanolone protect sympathoadrenal medulla cells against apoptosis via antiapoptotic Bcl-2 proteins. Proceedings of the National Academy of Sciences USA, 101, 8209–14.Google Scholar
  21. Chugani, H. T. (1998). A critical period of brain development: studies of cerebral glucose utilization with PET. Preventative Medicine, 27, 184–8.Google Scholar
  22. Cleary, M. P. (1991). The antiobesity effect of dehydroepiandrosterone in rats. Proceedings of the Society for Experimental Biology and Medicine, 196, 8–16.Google Scholar
  23. Collins, W.A. (1984). (ed.) Development during middle childhood: The years from six to twelve. Washington, DC: National Academy Press.Google Scholar
  24. Craig, A. D. (2002). How do you feel? Interoception: The sense of the physiological condition of the body. Nature Reviews Neuroscience, 3, 655–66.Google Scholar
  25. Craig, A. D. (2009). How do you feel—now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10, 59–70.Google Scholar
  26. Critchley, H. D. (2009). Psychophysiology of neural, cognitive and affective integration: fMRI and autonomic indicants. International Journal of Psychophysiology, 73, 88–94.Google Scholar
  27. Crowley, M. J., Wu, J., Molfese, P. J., & Mayes, L. C. (2010). Social exclusion in middle childhood: rejection events, slow-wave neural activity, and ostracism distress. Social Neuroscience, 12, 1–13.Google Scholar
  28. D’Astous, M., Morissette, M., Tanguay, B., Callier, S., & Di Paolo, T. (2003). Dehydroepiandrosterone (DHEA) such as 17beta-estradiol prevents MPTP-induced dopamine depletion in mice. Synapse, 47, 10–4.Google Scholar
  29. Dean, C. E. (2000). Prasterone (DHEA) and mania. The Annals of Pharmacotherapy, 34, 1419–22.Google Scholar
  30. de Glisezinski, I., Larrouy, D., Bajzova, M., Koppo, K., Polak, J., Berlan, M., et al. (2009). Adrenaline but not noradrenaline is a determinant of exercise-induced lipid mobilization in human subcutaneous adipose tissue. The Journal of Physiology, 587, 3393–404.Google Scholar
  31. Del Giudice, M. (2009). Sex, attachment, and the development of reproductive strategies. The Behavioral and Brain Sciences, 32, 1–67.Google Scholar
  32. Del Guidice, M., & Beslsky, J. (2010). Sex differences in attachment emerge in middle childhood: an evolutionary hypothesis. Child Development Perspectives, 4, 97–105.Google Scholar
  33. Del Guidice, M., Angeleri, R., & Maner, V. (2009). The juvenile transition: a developmental switch point in human life history. Developmental Reviews, 29, 1–31.Google Scholar
  34. Derby, C. A., Zilber, S., Brambilla, D., Morales, K. H., & McKinlay, J. B. (2006). Body mass index, waist circumference and waist to hip ratio and change in sex steroid hormones: the Massachusetts male ageing study. Clinical Endocrinology (Oxford), 65, 125–31.Google Scholar
  35. Dhom, G. (1973). The prepubertal and pubertal growth of the adrenal (adrenarche). Beiträge zur Pathologie, 150, 357–377.Google Scholar
  36. Diamond, A. (2002). Normal development of the prefrontal cortex from birth to young adulthood: Cognitive functions, anatomy, and biochemistry. In D. T. Stuss & K. T. Knight (Eds.), Principles of frontal lobe function (pp. 466–503). New York: Oxford University Press.Google Scholar
  37. Dorn, L. D., Rose, S. R., Rotenstein, D., Susman, E. J., Huang, B., Loucks, T. L., et al. (2008). Differences in endocrine parameters and psychopathology in girls with premature adrenarche versus on-time adrenarche. Journal of Pediatric Endocrinology & Metabolism, 21, 439–48.Google Scholar
  38. Dubas, J. S., Heijkoop, M., & van Aken, M. A. G. (2009). A preliminary investigation of parent-progeny olfactory recognition and parental investment. Human Nature, 20, 80–92.Google Scholar
  39. Ehrhart-Bornstein, M., Bornstein, S. R., Güse-Behling, H., Stromeyer, H. G., Rasmussen, T. N., Scherbaum, W. A., et al. (1994). Sympathoadrenal regulation of adrenal androstenedione release. Neuroendocrinology, 59, 406–12.Google Scholar
  40. Fair, D. A., Dosenbach, N. U., Church, J. A., Cohen, A. L., Brahmbhatt, S., Miezin, F. M., et al. (2009). Development of distinct control networks through segregation and integration. Proceedings of the National Academy of Science (USA), 104, 13507–12.Google Scholar
  41. Fehm, H. L., Kern, W., & Peters, A. (2006). The selfish brain: competition for energy resources. Progress in Brain Research, 153, 129–40.Google Scholar
  42. Flinn, M. V. (2006). Evolutionary ontogeny of stress response to social challenge in the human child. Developmental Review, 26, 138–174.Google Scholar
  43. Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences USA, 101, 817–819.Google Scholar
  44. Goldstein, D. S., & Kopin, I. J. (2008). Adrenomedullary, adrenocortical, and sympathoneural responses to stressors: a meta-analysis. Endocrine Regulation, 42, 111–9.Google Scholar
  45. Guazzo, E. P., Kirkpatrick, P. J., Goodyer, I. M., Shiers, H. M., & Herbert, J. (1996). Cortisol, dehydroepiandrosterone (DHEA), and DHEA sulfate in the cerebrospinal fluid of man: relation to blood levels and the effects of age. Journal of Clinical Endocrinology and Metabolism, 81, 3951–60.Google Scholar
  46. Hadwin, J. A., Garner, M., & Perez-Olivas, G. (2006). The development of information processing biases in childhood anxiety: a review and exploration of its origins in parenting. Clinical Psychology Review, 26, 876–94.Google Scholar
  47. Haegler, K., Zernecke, R., Kleemann, A. M., Albrecht, J., Pollatos, O., Brückmann, H., et al. (2010). No fear no risk! Human risk behavior is affected by chemosensory anxiety signals. Neuropsychologia, 48, 3901–8.Google Scholar
  48. Halpern, C. T., Udry, J. R., & Suchindran, C. (1998). Monthly measures of salivary testosterone predict sexual activity in adolescent males. Archives of Sexual Behavior, 27, 445–65.Google Scholar
  49. Herdt, G., & McClintock, M. (2000). The magical age of 10. Archives of Sexual Behavior, 29, 587–606.Google Scholar
  50. Hitze, B., van Hubold, C., Dyken, R., Schlichting, K., Lehnert, H., Entringer, S., et al. (2010). How the selfish brain organizes its supply and demand. Frontiers in Neuroenergetics, 2, 7.Google Scholar
  51. Hochberg, Z. (2008). Juvenility in the context of life history theory. Archives of Diseases of Childhood, 93, 534–9.Google Scholar
  52. Hochberg, Z. (2009). Evo-devo of child growth, II: human life history and transition between its phases. European Journal of Endocrinology, 160, 135–41.Google Scholar
  53. Hsu, C. C. (2006). Positive correlation between anxiety severity and plasma levels of dehydroepiandrosterone sulfate in medication-free patients experiencing a major episode of depression. Psychiatry and Clinical NeuroScience, 60, 746–50.Google Scholar
  54. Hsu, M., Anen, C., & Quartz, S. R. (2008). The right and the good: distributive justice and neural encoding of equity and efficiency. Science, 320, 10921985.Google Scholar
  55. Hummer, T. A., & McClintock, M. K. (2009). Putative human pheromone androstadienone attunes the mind specifically to emotional information. Hormones and Behavior, 55, 548–59.Google Scholar
  56. Irmak, M. K., Oztas, E., & Vural, H. (2004). Dependence of fetal hairs and sebaceous glands on fetal adrenal cortex and possible control from adrenal medulla. Medical Hypotheses, 62, 486–92.Google Scholar
  57. Kann, O., & Kovács, R. (2007). Mitochondria and neuronal activity. American Journal of Physiology and Cellular Physiology, 292, C641–57.Google Scholar
  58. Kaplowitz, P. B., Cockrell, J. L., & Young, R. B. (1986). Premature adrenarche. Clinical and diagnostic features. Clinical Pediatrics, 25, 28–34.Google Scholar
  59. Kramer, K. L., & Greaves, R. D. (2011). Juvenile subsistence effort, activity levels, and growth patterns: Middle childhood among Pumé foragers. Human Nature, 22. doi: 10.1007/s12110-011-9122-8
  60. Kramer, P. A. (1998). The costs of human locomotion: maternal investment in child transport. American Journal of Physical Anthropology, 107, 71–86.Google Scholar
  61. Krug, A. W., Langbein, H., Ziegler, C. G., Bornstein, S. R., Eisenhofer, G., & Ehrhart-Bornstein, M. (2009). Dehydroepiandrosterone-sulphate (DHEA-S) promotes neuroendocrine differentiation of chromaffin pheochromocytoma PC12 cells. Molecular and Cellular Endocrinology, 300, 126–31.Google Scholar
  62. Kuhn, F., & Natsch, A. (2009). Body odour of monozygotic human twins: A common pattern of odorant carboxylic acids released by a bacterial aminoacylase from axilla secretions contributing to an inherited body odour type. Journal of the Royal Society, Interface, 63, 77–92.Google Scholar
  63. Labows, J. N., Preti, G., Hoelzle, E., Leyden, J., & Kligman, A. (1979). Steroid analysis of human apocrine secretion. Steroids, 34, 249–58.Google Scholar
  64. Labrie, F., Belanger, A., Luu-The, V., Labrie, C., Simard, J., Cusan, L., et al. (1998). DHEA and the intracrine formation of androgens and estrogens in peripheral target tissues: its role during aging. Steroids, 63, 322–328.Google Scholar
  65. Lamm, C., & Singer, T. (2010). The role of anterior insular cortex in social emotions. Brain Structure & Function, 214, 579–91.Google Scholar
  66. Lancy, D. F., & Grove, M. A. (2011). Getting noticed: middle childhood in cross-cultural perspective. Human Nature, 22. doi: 10.1007/s12110-011-9117-5.
  67. Leung, A. K., & Robson, W. L. (2008). Premature adrenarche. Journal of Pediatric Health Care, 22, 230–233.Google Scholar
  68. Li, Z., Cui, S., Zhang, Z., Zhou, R., Ge, Y., Sokabe, M., et al. (2009). DHEA-neuroprotection and -neurotoxicity after transient cerebral ischemia in rats. Journal of Cerebral Blood Flow and Metabolism, 29, 287–96.Google Scholar
  69. Liston, C., McEwen, B. S., & Casey, B. J. (2009). Psychosocial stress reversibly disrupts prefrontal processing and attentional control. Proceedings of the National Academy of Sciences USA, 106, 912–917.Google Scholar
  70. Liu, D., Ren, M., Bing, X., Stotts, C., Deorah, S., Love-Homan, L., et al. (2006). Dehydroepiandrosterone inhibits intracellular calcium release in beta-cells by a plasma membrane-dependent mechanism. Steroids, 71, 691–699.Google Scholar
  71. Luciana, M., & Nelson, C. A. (1998). The functional emergence of prefrontally-guided working memory systems in four to eight year old children. Neuropyschologia, 36, 273–293.Google Scholar
  72. Lundström, J. N., Boyle, J. A., Zatorre, R. J., & Jones-Gotman, M. (2008). Functional neuronal processing of body odors differs from that of similar common odors. Cerebral Cortex, 18, 1466–74.Google Scholar
  73. Lundström, J. N., Boyle, J. A., Zatorre, R. J., & Jones-Gotman, M. (2009). The neuronal substrates of human olfactory based kin recognition. Human Brain Mapping, 30, 2571–80.Google Scholar
  74. Lundström, J. N., Gonçalves, M., Esteves, F., & Olsson, M. J. (2003). Psychological effects of subthreshold exposure to the putative human pheromone 4,16-androstadien-3-one. Hormones and Behavior, 44, 395–401.Google Scholar
  75. MacAskill, A. F., & Kittler, J. T. (2010). Control of mitochondrial transport and localization in neurons. Trends in Cell Biology, 20, 102–12.Google Scholar
  76. Maccoby, E. E. (1998). The two sexes: growing up apart, coming together. Cambridge, MA: Harvard University Press.Google Scholar
  77. Machinal-Quélin, F., Dieudonné, M. N., Pecquery, R., Leneveu, M. C., & Giudicelli, Y. (2002). Direct in vitro effects of androgens and estrogens on ob gene expression and leptin secretion in human adipose tissue. Endocrine, 18, 179–84.Google Scholar
  78. Maninger, N., Wolkowitz, O. M., Reus, V. I., Epel, E. S., & Mellon, S. H. (2009). Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Frontiers in Neuroendocrinology, 30, 65–91.Google Scholar
  79. Markowitz, J. S., Carson, W. H., & Jackson, C. W. (1999). Possible dihydroepiandrosterone-induced mania. Biological Psychiatry, 45, 241–242.Google Scholar
  80. Marlowe, F. W. (2004). What explains Hadza food sharing? Research in Economic Anthropology, 23, 69–88.Google Scholar
  81. McClintock, M., & Herdt, G. (1996). Rethinking puberty: the development of sexual attraction. Current Directions in Psychological Sciences, 5, 178–183.Google Scholar
  82. McIntosh, L. J., & Sapolsky, R. M. (1996). Glucocorticoids may enhance oxygen radical-mediated neurotoxicity. Neurotoxicology, 17, 873–82.Google Scholar
  83. McIntosh, L. J., Hong, K. E., & Sapolsky, R. M. (1998). Glucocorticoids may alter antioxidant enzyme capacity in the brain: baseline studies. Brain Research, 791, 209–14.Google Scholar
  84. Mizuno, T., Yotsuyanagi, S., Kondo, Y., Komatsu, K., Ishiura, Y., Nakamura, Y., et al. (2006). Dehydroepiandrosterone alleviates copulatory disorder induced by social stress in male rats. The Journal of Sexual Medicine, 3, 612–618.Google Scholar
  85. Molinari, L., Largo, R. H., & Prader, A. (1980). Analysis of the growth spurt at age seven (mid-growth spurt). Helvetia Paediatrica, 35, 325–34.Google Scholar
  86. Moslemi, M. (2004). An epidemiological survey of the time and sequence of eruption of permanent teeth in 4-15-year-olds in Tehran, Iran. International Journal of Paediatric Dentistry, 14, 432–8.Google Scholar
  87. Mühl, A., Herkner, K. R., & Swoboda, W. (1992). The mid-growth spurt–a pre-puberty growth spurt. Review of its significance and biological correlations. Pediatric Pathology, 27, 119–23.Google Scholar
  88. Muller, C., Hennebert, O., & Morfin, R. (2006). The native anti-glucocorticoid paradigm. Journal of Steroid Biochemestry and Molecular Biology, 100, 95–105.Google Scholar
  89. Muzik, O., Janisse, J., Ager, J., Shen, C., Chugani, D. C., & Chugani, H. T. (1999). A mathematical model for the analysis of cross-sectional brain glucose metabolism data in children. Progress in Neuropsychopharmacology and Biological Psychiatry, 23, 589–600.Google Scholar
  90. Nakamura, Y., Gang, H. X., Suzuki, T., Sasano, H., & Rainey, W. E. (2009). Adrenal changes associated with adrenarche. Reviews in Endocrinology and Metabolic Disorders, 10, 19–26.Google Scholar
  91. Natsch, A., Derrer, S., Flachsmann, F., & Schmid, J. (2006). A broad diversity of volatile carboxylic acids, released by a bacterial aminoacylase from axilla secretions, as candidate molecules for the determination of human-body odor type. Chemical Biodiversity, 3, 1–20.Google Scholar
  92. Natsch, A., Schmid, J., & Flachsmann, F. (2004). Identification of odoriferous sulfanylalkanols in human axilla secretions and their formation through cleavage of cysteine precursors by a C-S lyase isolated from axilla bacteria. Chemical Biodiversity, 1, 1058–72.Google Scholar
  93. Navar, D., Saulis, D., Corll, C., Svec, F., & Porter, J. R. (2006). Dehydroepiandrosterone (DHEA) blocks the increase in food intake caused by neuropeptide Y (NPY) in the Zucker rat. Nutrition and Neuroscience, 9, 225–32.Google Scholar
  94. Nawata, H., Watanabe, T., Yanase, T., Nomura, M., Ashida, K., Min, L., et al. (2010). Sex hormone and neuroendocrine aspects of the metabolic syndrome. Progress in Brain Research, 182, 175–187.Google Scholar
  95. Naylor, J. C., Hulette, C. M., Steffens, D. C., Shampine, L. J., Ervin, J. F., Payne, V. M., et al. (2008). Cerebrospinal fluid dehydroepiandrosterone levels are correlated with brain dehydroepiandrosterone levels, elevated in Alzheimer’s disease, and related to neuropathological disease stage. Journal of Clinical Endocrinology and Metabolism, 93, 3173–8.Google Scholar
  96. Nesse, R. M. (2001). The smoke detector principle: natural slection and the regulation of defensive mechanisms. In Damasio, A.R., Kagan, J., Harrington, A., Moss, B.S.H., Shaikh, R. (Eds.). Unity of Knowledge: The convergence of natural and human science. Annals of New York Academy of Science, 935, 75–85.Google Scholar
  97. Olsson, S. B., Barnard, J., & Turr, L. (2006). Olfaction and identification of unrelated individuals: examination of the mysteries of human odor recognition. Journal of Chemical Ecology, 32, 1635–45.Google Scholar
  98. Orentreich, N., Brind, J. L., Rizer, R. L., & Vogelman, J. H. (1984). Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. Journal of Clinical Endocrinology and Metabolism, 59, 551–55.Google Scholar
  99. Palmert, M. R., Hayden, D. L., Mansfield, M. J., Crigler, J. F., Jr., Crowley, W. F., Jr., Chandler, D. W., et al. (2001). The longitudinal study of adrenal maturation during gonadal suppression: evidence that adrenarche is a gradual process. Journal of Clinical Endocrinology and Metabolism, 86, 4536–42.Google Scholar
  100. Paulus, M. P., & Stein, M. B. (2006). An insular view of anxiety. Biological Psychiatry, 60, 383–7.Google Scholar
  101. Paulus, M. P., & Stein, M. B. (2010). Interoception in anxiety and depression. Brain Structure & Function, 214, 451–63.Google Scholar
  102. Patel, M. A., & Katyare, S. S. (2006a). Dehydroepiandrosterone (DHEA) treatment stimulates oxidative energy metabolism in the cerebral mitochondria from developing rats. International Journal of Developmental Neuroscience, 24, 327–34.Google Scholar
  103. Patel, M. A., & Katyare, S. S. (2006b). Treatment with dehydroepiandrosterone (DHEA) stimulates oxidative energy metabolism in the cerebral mitochondria. A comparative study of effects in old and young adult rats. Neuroscience Letters, 402, 131–6.Google Scholar
  104. Pélissier, M. A., Trap, C., Malewiak, M. I., & Morfin, R. (2004). Antioxidant effects of dehydroepiandrosterone and 7alpha-hydroxy-dehydroepiandrosterone in the rat colon, intestine and liver. Steroids, 69, 137–144.Google Scholar
  105. Pélissier, M. A., Muller, C., Hill, M., & Morfin, R. (2006). Protection against dextran sodium sulfate-induced colitis by dehydroepiandrosterone and 7alpha-hydroxy-dehydroepiandrosterone in the rat. Steroids, 71, 240–248.Google Scholar
  106. Penn, D. J., Oberzaucher, E., Grammer, K., Fischer, G., Soini, H. A., Wiesler, D., et al. (2007). Individual and gender fingerprints in human body odour. Journal of the Royal Society, Interface, 4, 331–40.Google Scholar
  107. Pérez-Neri, I., Montes, S., Ojeda-López, C., Ramírez-Bermúdez, J., & Ríos, C. (2008). Modulation of neurotransmitter systems by dehydroepiandrosterone and dehydroepiandrosterone sulfate: mechanism of action and relevance to psychiatric disorders. Progress in Neuropsychopharmacology and Biological Psychiatry, 32, 1118–30.Google Scholar
  108. Pernet, A., Walker, M., Gill, G. V., Orskov, H., Alberti, K. G., & Johnston, D. G. (1984). Metabolic effects of adrenaline and noradrenaline in man: studies with somatostatin. Diabetes & Metabolism, 10, 98–105.Google Scholar
  109. Perrini, S., Natalicchio, A., Laviola, L., Belsanti, G., Montrone, C., Cignarelli, A., et al. (2004). Dehydroepiandrosterone stimulates glucose uptake in human and murine adipocytes by inducing GLUT1 and GLUT4 translocation to the plasma membrane. Diabetes, 53, 41–52.Google Scholar
  110. Peters, A., Schweiger, U., Pellerin, L., Hubold, C., Oltmanns, K. M., Conrad, M., et al. (2004). The selfish brain: competition for energy resources. Neuroscience and Biobehavioral Reviews, 28, 143–80.Google Scholar
  111. Pezawas, L., Meyer-Lindenberg, A., Drabant, E. M., Verchinski, B. A., Munoz, K. E., Kolachana, B. S., et al. (2005). 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nature Neuroscience, 8, 828–34.Google Scholar
  112. Piaget, J. (1963). The origins of intelligence in children. New York: W.W. Norton.Google Scholar
  113. Pineiro, V., Casabiell, X., Peinó, R., Lage, M., Camiña, J. P., Menendez, C., et al. (1999). Dihydrotestosterone, stanozolol, androstenedione and dehydroepiandrosterone sulphate inhibit leptin secretion in female but not in male samples of omental adipose tissue in vitro: lack of effect of testosterone. Journal of Endocrinology, 160, 425–32.Google Scholar
  114. Porter, R. H., Cernoch, J. M., & Balogh, R. D. (1985). Odor signatures and kin recognition. Physiology and Behavior, 34, 445–8.Google Scholar
  115. Posner, M. I., & Rothbart, M. K. (2007). Research on attention networks as a model for the integration of psychological science. Annual Review of Psychology, 58, 1–23.Google Scholar
  116. Prehn-Kristensen, A., Wiesner, C., Bergmann, T. O., Wolff, S., Jansen, O., Mehdorn, H. M., et al. (2009). Induction of empathy by the smell of anxiety. PloS One, 4, e5987.Google Scholar
  117. Reilly, D. S., van Donkelaar, P., Saavedra, S., & Woollacott, M. H. (2008). Interaction between the development of postural control and the executive function of attention. Journal of Motor Behavior, 40, 90–102.Google Scholar
  118. Reinehr, T., de Sousa, G., & Wabitsch, M. (2006). Relationships of IGF-I and androgens to skeletal maturation in obese children and adolescents. Journal of Pediatric Endocrinology & Metabolism, 19, 1133–40.Google Scholar
  119. Remer, T. (2000). Adrenarche and nutritional status. Journal of Pediatric Endocrinology & Metabolism, 13(Supplement 5), 1253–5.Google Scholar
  120. Remer, T., & Manz, F. (1999). Role of nutritional status in the regulation of adrenarche. Journal of Clinical Endocrinology and Metabolism, 84, 3936–44.Google Scholar
  121. Remer, T., & Manz, F. (2001). The midgrowth spurt in healthy children is not caused by adrenarche. Journal of Clinical Endocrinology and Metabolism, 86, 4183–6.Google Scholar
  122. Remer, T., Manz, F., Hartmann, M. F., Schoenau, E., & Wudy, S. A. (2009). Prepubertal healthy children’s urinary androstenediol predicts diaphyseal bone strength in late puberty. Journal of Clinical Endocrinology and Metabolism, 94, 575–8.Google Scholar
  123. Remer, T., Boye, K. R., Hartmann, M. F., & Wudy, S. A. (2005). Urinary markers of adrenarche: reference values in health subjects, aged 3-18 years. Journal of Clinical Endocrinology and Metabolism, 90, 2015–2021.Google Scholar
  124. Remer, T., Boye, K. R., Hartmann, M. F., Neu, C., Schoenau, E., Manz, F., et al. (2004). Adrenal steroid hormones and metaphyseal bone in children. Hormone Research, 62, 221–6.Google Scholar
  125. Remer, T., Boye, K. R., Hartmann, M., Neu, C. M., Schoenau, E., Manz, F., et al. (2003). Adrenarche and bone modeling and remodeling at the proximal radius: weak androgens make stronger cortical bone in healthy children. Journal of Bone and Mineral Research, 18, 1539–46.Google Scholar
  126. Rocher, A. B., Chapon, F., Blaizot, X., Baron, J. C., & Chavoix, C. (2003). Resting-state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: a study in baboons. NeuroImage, 20, 1894–98.Google Scholar
  127. Rueda, M. R., Fan, J., McCandliss, B. D., Halparin, J. D., Gruber, D. B., Lercari, L. P., et al. (2004). Development of attentional networks in childhood. Neuropsychologia, 42, 1029–40.Google Scholar
  128. Sánchez, J., Pérez-Heredia, F., Priego, T., Portillo, M. P., Zamora, S., Garaulet, M., et al. (2008). Dehydroepiandrosterone prevents age-associated alterations, increasing insulin sensitivity. Journal of Nutrition and Biochemistry, 19, 809–18.Google Scholar
  129. Schwabe, L., Tegenthoof, M., Hoffken, O., & Wolf, O. T. (2010). Concurrent glucocorticoid and noradrenergic activity shifts instrumental behavior from goal-directed to habitual control. Journal of Neuroscience, 30, 8190–8196.Google Scholar
  130. Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N., et al. (2008). Neurodevelopmental trajectories of the human cerebral cortex. Journal of Neuroscience, 28, 3586–94.Google Scholar
  131. Sicard, F., Ehrhart-Bornstein, M., Corbeil, D., Sperber, S., Krug, A. W., Ziegler, C. G., et al. (2007). Age-dependent regulation of chromaffin cell proliferation by growth factors, dehydroepiandrosterone (DHEA), and DHEA sulfate. Proceedings of the National Academy of Science U S A., 104, 2007–12.Google Scholar
  132. Singer, T. (2007). The neuronal basis of empathy and fairness. Novartis Foundation Symposium, 278, 20–30. (for discussion, see pp. 30-40, 89-96, 216-221).Google Scholar
  133. Stewart, M. E., Downing, D. T., Cook, J. S., Hansen, J. R., & Strauss, J. S. (1992). Sebaceous gland activity and serum dehydroepiandrosterone sulfate levels in boys and girls. Archives of Dermatology, 128, 1345–8.Google Scholar
  134. Strous, R. D., Spivak, B., Yoran-Hegesh, R., Maayan, R., Averbuch, E., Kotler, M., et al. (2001). Analysis of neurosteroid levels in attention deficit hyperactivity disorder. The International Journal of Neuropsychopharmacology, 4, 259–64.Google Scholar
  135. Sulcova, J., Hill, M., Hampl, R., & Starka, L. (1997). Age and sex related differences in serum levels of unconjugated dehydroepiandrosterone and its sulfate in normal subjects. Journal of Endocrinology, 154, 57–62.Google Scholar
  136. Suzuki, M., Wright, L. S., Marwah, P., Lardy, H. A., & Svendsen, C. N. (2004). Mitotic and neurogenic effects of dehydroepiandrosterone (DHEA) on human neural stem cell cultures derived from the fetal cortex. Proceedings of the National Academy of Science USA, 101, 3202–7.Google Scholar
  137. Tabibnia, G., Satpute, A. B., & Lieberman, M. D. (2008). The sunny side of fairness: preference for fairness activates reward circuitry (and disregarding unfairness activates self-control circuitry). Psychological Science, 19, 339–47.Google Scholar
  138. Thiboutot, D., Jabara, S., McAllister, J. M., Sivarajah, A., Gilliland, K., Cong, Z., et al. (2003). Human skin is a steroidogenic tissue: steroidogenic enzymes and cofactors are expressed in epidermis, normal sebocytes, and an immortalized sebocyte cell line (SEB-1). Journal of Investgative Dermatology, 120, 905–14.Google Scholar
  139. Thompson, J. L., & Nelson, A. J. (2011). Middle childhood and modern human origins. Human Nature, 22. doi: 10.1007/s12110-011-9119-3.
  140. Utriainen, P., Voutilainenm, R., & Jääskeläinenm, J. (2009). Continuum of phenotypes and Sympathoadrenal function in premature adrenarche. European Journal of Endocrinology, 160, 657–65.Google Scholar
  141. Valle, L. D., Toffolo, V., Nardi, A., Fiore, C., Bernante, P., Di Liddo, R., et al. (2006). Tissue-specific transcriptional initiation and activity of steroid sulfatase complementing dehydroepiandrosterone sulfate uptake and intracrine steroid activations in human adipose tissue. Journal of Endocrinology, 190, 129–39.Google Scholar
  142. Van Bogaert, P., Wikler, D., Damhaut, P., Szliwowski, H. B., & Goldman, S. (1998). Regional changes in glucose metabolism during brain development from the age of 6 years. NeuroImage, 8, 62–8.Google Scholar
  143. Van Goozen, S. H., Matthys, W., Cohen-Kettenis, P. T., Thijssen, J. H. H., & van Engeland, H. (1998). Adrenal androgens and aggression in conduct disorder prepubertal boys and normal controls. Biological Psychiatry, 43, 156–158.Google Scholar
  144. Van Goozen, S. H., van den Ban, E., Matthys, W., Cohen-Kettenis, P. T., Thijssen, J. H., & van Engeland, H. (2000). Increased adrenal androgen functioning in children with oppositional defiant disorder: a comparison with psychiatric and normal controls. Journal of the American Academy of Child and Adolescent Psychiatry, 39, 1446–51.Google Scholar
  145. Vaughn, C. L., Langeral, N. G., & O’Mally, M. J. (2003). Neuromoderation of human locomotion revealed by non-dimensional scaling. Experimental Brain Research, 153, 123–7.Google Scholar
  146. Villareal, D. T., & Holloszy, J. O. (2004). Effect of DHEA on abdominal fat and insulin action in elderly women and men: a randomized controlled trial. Journal of the American Medical Association, 292, 2243–8.Google Scholar
  147. Vos, M., Lauwers, E., & Verstreker, P. (2010). Synaptic mitochondria in synaptic transmission and organization of vesicle pools in health and disease. Frontiers in Synaptic NeuroScience, 2, 139.Google Scholar
  148. Wedl, J. S., Danias, S., Schmeizle, R., & Friedrich, R. E. (2005). Eruption times of permanent teeth in children and young adolescents in Athens (Greece). Clinical Oral Investigation, 9, 131–134.Google Scholar
  149. Weise, M., Eisenhofer, G., & Merke, D. P. (2002). Pubertal and gender-related changes in the sympathoadrenal system in healthy children. Journal of Clinical Endocrinology and Metabolism, 87, 5038–43.Google Scholar
  150. Weisfeld, G. E., Czilli, T., Phillips, K. A., Gall, J. A., & Lichtman, C. M. (2003). Possible olfaction-based mechanisms in human kin recognition and inbreeding avoidance. Journal of Experimental Child Psychology, 85, 279–95.Google Scholar
  151. Weisner, T. W. (1984). Ecocultural niches of middle childhood: a cross-cultural perspective. In W. A. Collins (Ed.), Development of middle childhood: the years from Six to Twelve (pp. 335–369). Washington, D.C: National Academy Press.Google Scholar
  152. White, S. (1996). The child’s entry into the age of reason. In A. H. Sameroff & M. M. Hiath (Eds.), The five to seven year shift: the age of reason and responsibility (pp. 17–32). Chicago: University of Chicago Press.Google Scholar
  153. Wudy, S. A., Hartmann, M. F., & Remer, T. (2007). Sexual dimorphism in cortisol secretion starts after age 10 in healthy children: urinary cortisol metabolite excretion rates during growth. American Journal of Physiology, Endocrinology and Metabolism, 293, E970–6.Google Scholar
  154. Yamamoto, A., & Ito, M. (1992). Sebaceous gland activity and urinary androgen levels in children. Journal of Dermatological Science, 4, 98–104.Google Scholar
  155. Yamamoto, A., & Ito, M. (1994). Wax ester secretion rates and plasma dehydroepiandrosterone sulfate levels in children. Journal of Dermatology, 21, 59–60.Google Scholar
  156. Yamashita, R., Saito, T., Satoh, S., Aoki, K., Kaburagi, Y., & Sekihara, H. (2005). Effects of dehydroepiandrosterone on gluconeogenic enzymes and glucose uptake in human hepatoma cell line, HepG2. Endocrine Journal, 52, 727–33.Google Scholar
  157. Yildirim, A. S., Gumus, D., Sahin, Y. N., & Akcay, F. (2003). Dehydroepiandrosterone improves heptic anti-oxidant systems after renal ischema-reperfusion injury in rodents. Annals of Clinical Lab Science, 33, 459–464.Google Scholar
  158. Yorek, M. A., Coppey, L. J., Gellett, J. S., Davidson, E. P., Bing, X., Lund, D. D., et al. (2002). Effect of treatment of diabetic rats with dehydroepiandrosterone on vascular and neural function. American Journal of Physiology, Endocrinology and Metabolism, 283, E1067–75.Google Scholar
  159. Zheng, P. (2009). Neuroactive steroid regulation of neurotransmitter release in the CNS: action, mechanism and possible significance. Progress in Neurobiology, 89, 134–52.Google Scholar
  160. Ziegler, C. G., Sicard, F., Lattke, P., Bornstein, S. R., Ehrhart-Bornstein, M., & Krug, A. W. (2008). Dehydroepiandrosterone induces a neuroendocrine phenotype in nerve growth factor-stimulated chromaffin pheochromocytoma PC12 cells. Endocrinology, 149, 20–28.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of AnthropologyUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations