Advertisement

Human Nature

, 22:249 | Cite as

Middle Childhood and Modern Human Origins

  • Jennifer L. ThompsonEmail author
  • Andrew J. Nelson
Article

Abstract

The evolution of modern human life history has involved substantial changes in the overall length of the subadult period, the introduction of a novel early childhood stage, and many changes in the initiation, termination, and character of the other stages. The fossil record is explored for evidence of this evolutionary process, with a special emphasis on middle childhood, which many argue is equivalent to the juvenile stage of African apes. Although the “juvenile” and “middle childhood” stages appear to be the same from a broad comparative perspective, in that they begin with the eruption of the first molar and the achievement of the majority of adult brain size and end with sexual maturity, the detailed differences in the expression of these two stages, and how they relate to the preceding and following stages, suggest that a distinction should be maintained between them to avoid blurring subtle, but important, differences.

Keywords

Middle childhood Growth and development Adolescent growth spurt Life history 

Notes

Acknowledgments

Jennifer L. Thompson would like to acknowledge the support of the Department of Anthropology at University of Nevada, Las Vegas. A. J. Nelson would like to acknowledge the support of the Department of Anthropology at The University of Western Ontario. We thank Dr. Menghin, the Director of the Museum für Vor- und Frühgeschichte, Berlin, for permission to study the Le Moustier 1 specimen and to Mrs. Almut Hoffmann for her assistance. Both authors would like to express their thanks to Professor Alan Morris, Dept. of Anatomy, University of Cape Town, and to Dr. Jerome Cybulski, Museum of Civilization, Gatineau, for permission to examine human skeletal material in their care. We both thank Ben Campbell for inviting us to participate in this volume and for his helpful comments on the manuscript.

References

  1. Aiello, L., & Dean, M. C. (1990). An introduction to human evolutionary anatomy. London: Academic.Google Scholar
  2. Anemone, R. L., Mooney, M. P., & Siegel, M. I. (1996). Longitudinal study of dental development in chimpanzees of known chronological age: implications for understanding the age at death of Plio-Pleistocene hominids. American Journal of Physical Anthropology, 99, 119–133.Google Scholar
  3. Anton, S. C. (2002). Cranial growth in Homo erectus. In N. Minugh-Purvis & K. McNamara (Eds.), Human evolution through developmental change (pp. 349–380). Baltimore: Johns Hopkins University Press.Google Scholar
  4. Anton, S. C., & Leigh, S. R. (2003). Growth and life history in Homo erectus. In J. L. Thompson, G. E. Krovitz, & A. J. Nelson (Eds.), Patterns of growth and development in the genus Homo (pp. 219–245). Cambridge: Cambridge University Press.Google Scholar
  5. Arsuaga, J. L., Bermúdez de Castro, J. M., & Carbonell, E. (1997). The Sima de los Huesos hominid site. Journal of Human Evolution, 33, 219–281.Google Scholar
  6. Arsuaga, J. L., Martínez, I., Gracia, A., & Lorenzo, C. (1997). The Sima de los Huesos crania (Sierra de Atapuerca, Spain). Journal of Human Evolution, 33, 219–281.Google Scholar
  7. Arsuaga, J. L., Martinez, I., Lorenzo, C., & Gracia, A. (1999). The human cranial remains from Gran Dolina Lower Pleistocene site (Sierra de Atapuerca, Spain). Journal of Human Evolution, 37, 431–457.Google Scholar
  8. Bayle, P., Braga, J., Mazurier, A., & Macchiarelli, R. (2009a). Dental developmental pattern of the Neanderthal child from Roc de Marsal: a high-resolution 3D analysis. Journal of Human Evolution, 56, 66–75.Google Scholar
  9. Bayle, P., Braga, J., Mazurier, A., & Macchiarelli, R. (2009b). Brief communication: high-resolution assessment of the dental developmental pattern and characterization of tooth tissue proportions in the Late Upper Paleolithic child from La Madeleine, France. American Journal of Physical Anthropology, 138, 493–498.Google Scholar
  10. Begun, D., & Walker, A. (1993). The endocast. In A. Walker & R. Leakey (Eds.), The Nariokotome Homo erectus skeleton (pp. 326–358). Cambridge: Harvard University Press.Google Scholar
  11. Berger, T., & Trinkaus, E. (1995). Patterns of trauma among the Neanderthals. Journal of Archaeological Science, 22, 841–52.Google Scholar
  12. Bermúdez de Castro, J. M., & Rosas, A. (2001). Pattern of dental development in hominid XVIII from the Middle Pleistocene Atapuerca-Sima de los Huesos site (Spain). American Journal of Physical Anthropology, 114, 325–330.Google Scholar
  13. Bermúdez de Castro, J. M., Arsuaga, J. L., Carbonell, E., Rosas, A., Martínez, I., & Mosquera, M. (1997). A hominid from the Lower Pleistocene of Atapuerca, Spain: possible ancestor to Neandertals and modern humans. Science, 276, 1392–1395.Google Scholar
  14. Bermúdez de Castro, J. M., Rosas, A., Carbonell, E., Nicolás, E., Rodríguez, J., & Arsuaga, J. L. (1999). A modern human pattern of dental development in Lower Pleistocene hominids from Atapuerca-TD6 (Spain). Proceedings of the National Academy of Science USA, 96, 4210–4213.Google Scholar
  15. Bermúdez de Castro, J. M., Ramírez Rozzi, F., Martinón-Torres, M., Sarmiento Pérez, S., & Rosas, A. (2003). Patterns of dental development in Lower and Middle Pleistocene hominins from Atapuerca, (Spain). In J. L. Thompson, G. E. Krovitz, & A. J. Nelson (Eds.), Patterns of growth and development in the genus Homo (pp. 246–270). Cambridge: Cambridge University Press.Google Scholar
  16. Beynon, A. D., & Dean, M. C. (1988). Distinct dental development pattern in early fossil hominids. Nature, 335, 509–514.Google Scholar
  17. Beynon, A. D., & Dean, M. C. (1991). Hominid dental development. Nature, 351, 165.Google Scholar
  18. Bilsborough, A., & Thompson, J. L. (2005). Dentition of the Le Moustier 1 Neanderthal. In H. Ullrich (Ed.), The Neandertal adolescent Le Moustier 1: New aspects, new results (pp. 157–186). Berlin: Staatliche Museen zu Berlin, Preußischer Kulturbesiz.Google Scholar
  19. Blurton Jones, N. (2006). Contemporary hunter-gatherers and human life history evolution. In K. Hawkes & R. R. Paine (Eds.), The evolution of human life history (pp. 231–266). Santa Fe: School of American Research Press.Google Scholar
  20. Bocherens, H., Billiou, D., Marioti, A., Patou-Mathis, M., Bonjean, D., & Otte, M. (2001). New isotopic evidence for dietary habits of Neandertals from Belgium. Journal of Human Evolution, 40, 497–505.Google Scholar
  21. Bock, J., & Sellen, D. W. (2002). Childhood and the evolution of the human life course an introduction. Human Nature, 13, 153–159.Google Scholar
  22. Bogin, B. (1988). Patterns of human growth (1st ed.). Cambridge: Cambridge University Press.Google Scholar
  23. Bogin, B. (1997). Evolutionary hypotheses for human childhood. Yearbook of Physical Anthropology, 40, 63–89.Google Scholar
  24. Bogin, B. (1999). Patterns of human growth (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  25. Bogin, B. (2003). The human pattern of growth and development in paleontological perspective. In J. L. Thompson, G. E. Krovitz, & A. J. Nelson (Eds.), Patterns of growth and development in the genus Homo (pp. 15–44). Cambridge: Cambridge University Press.Google Scholar
  26. Bogin, B. (2006). The evolution of human childhood and fertility. In K. Hawkes & R. R. Paine (Eds.), The evolution of human life history (pp. 197–230). Santa Fe: School of American Research Press.Google Scholar
  27. Bogin, B., & Smith, H. (1996). Evolution of the human life cycle. American Journal of Human Biology, 8, 703–716.Google Scholar
  28. Braga, J., & Heuze, Y. (2007). Quantifying variation in human dental development sequences: an evo-devo perspective. In S. E. Bailey & J.-J. Hublin (Eds.), Dental perspectives on human evolution (pp. 247–261). Dordrecht: Springer.Google Scholar
  29. Bromage, T. G., & Dean, M. C. (1985). Re-evaluation of the age at death of immature fossil hominids. Nature, 317, 525–527.Google Scholar
  30. Brumbach, B. H., Figueredo, A. J., & Ellis, B. J. (2009). Effects of harsh and unpredictable environments in adolescence on development of life history strategies. Human Nature, 20, 25–51.Google Scholar
  31. Buikstra, J. E., & Ubelaker, D. H. (Eds.) (1994). Standards for data collection from human skeletal remains. Arkansas Archaeological Survey Research Series 44.Google Scholar
  32. Campbell, B. (2006). Adrenarche and the evolution of human life history. American Journal of Human Biology, 18, 569–589.Google Scholar
  33. Caspari, R., & Lee, S.-H. (2004). Older age becomes common late in human evolution. Proceedings of the National Academy of Science USA, 101, 10895–10900.Google Scholar
  34. Charnov, E., & Berrigan, D. (1993). Why do female primates have such long lifespans and so few babies? Or, life in the slow lane. Evolutionary Anthropology, 1, 191–194.Google Scholar
  35. Churchill, S. E. (1993). Weapon technology, prey size selection, and hunting methods in modern hunter-gatherers: implications for hunting in the Palaeolithic and Mesolithic. In G. L. Peterkin, H. M. Bricker, & P. Mellars (Eds.), Hunting and animal exploitation in the later Palaeolithic and Mesolithic of Eurasia. Archeological Papers of the American Anthropological Association, 4, 11–24.Google Scholar
  36. Churchill, S. E. (1994). Human upper body evolution in the Eurasian later Pleistocene. PhD dissertation, Department of Anthropology, University of New Mexico.Google Scholar
  37. Coqueugniot, H., & Hublin, J.-J. (2007). Endocranial volume and brain growth in immature Neandertals. Periodicum Biologorum, 109, 379–385.Google Scholar
  38. Coqueugniot, H., Hublin, J.-J., Veillon, F., Houët, F., & Jacob, T. (2004). Early brain growth in Homo erectus and implications for cognitive ability. Nature, 431, 299–302.Google Scholar
  39. Crompton, R. H., Vereecke, E. E., & Thorpe, S. K. S. (2008). Locomotion and posture from the common hominoid ancestor to fully modern hominins, with special reference to the last common panin/hominin ancestor. Journal of Anatomy, 212, 501–543.Google Scholar
  40. Dean, M. C. (1989). The developing dentition and tooth structure in hominoids. Folia Primatologica, 53, 160–176.Google Scholar
  41. Dean, M. C., & Smith, H. B. (2009). Growth and development of the Nariokotome youth, KNM-WT 15000. In F. E. Grine, J. G. Fleagle, & R. E. Leakey (Eds.), The first humans: Origin of the genus Homo (pp. 101–120). New York: Springer.Google Scholar
  42. Dean, M. C., Leakey, M. G., Reid, D., Schrenk, F., Schwartz, G. T., Stringer, C., et al. (2001). Growth processes in teeth distinguish modern humans from Homo erectus and earlier hominins. Nature, 414, 628–631.Google Scholar
  43. Dettwyler, K. A. (1995). A time to wean: The hominid blueprint for the natural age of weaning in modern human populations. In P. Stuart-Macadam & K. A. Dettwyler (Eds.), Breastfeeding: Biocultural perspectives (pp. 39–73). New York: Aldine de Gruyter.Google Scholar
  44. Dienske, H. (1986). A comparative approach to the question of why human infants develop so slowly. In J. G. Else & P. C. Lee (Eds.), Primate ontogeny, cognition and social behaviour (pp. 145–154). Cambridge: Cambridge University Press.Google Scholar
  45. Ellis, B. J. (2004). Timing of pubertal maturation in girls: an integrated life history approach. Psychological Bulletin, 130, 920–958.Google Scholar
  46. Falguéres, C., Bahain, J.-J., Yoloyama, Y., Arsuaga, J. L., Bermúdez de Castro, J. M., Carbonell, E., et al. (1999). Earliest humans in Europe: the age of TD6 Gran Dolina, Atapuerca, Spain. Journal of Human Evolution, 37, 343–352.Google Scholar
  47. Froehle, A. W., & Churchill, S. E. (2009). Energetic competition between Neandertals and anatomically modern humans. PaleoAnthropology, 2009, 96–116.Google Scholar
  48. Galtés, I., Jordana, X., Manyosa, J., & Malgosa, A. (2009). Functional implications of radial diaphyseal curvature. American Journal of Physical Anthropology, 138, 286–292.Google Scholar
  49. Guatelli-Steinberg, D. (2009). Recent studies of dental development in Neandertals: implications for Neandertal life histories. Evolutionary Anthropology, 18, 9–20.Google Scholar
  50. Guatelli-Steinberg, D., & Reid, D. J. (2008). What molars contribute to an emerging understanding of lateral enamel formation in Neandertals vs. modern humans. Journal of Human Evolution, 54, 236–250.Google Scholar
  51. Guatelli-Steinberg, D., Reid, D. J., Bishop, T. A., & Larsen, C. S. (2005). Anterior tooth growth periods in Neandertals were comparable to those of modern humans. Proceedings of the National Academy of Sciences USA, 102, 14197–14202.Google Scholar
  52. Guatelli-Steinberg, D., Reid, D. J., & Bishop, T. A. (2007). Did the lateral enamel of Neandertal anterior teeth grow differently from that of modern humans? Journal of Human Evolution, 52, 72–84.Google Scholar
  53. Gurven, M., & Walker, R. (2006). Energetic demand of multiple dependents and the evolution of slow human growth. Proceedings of the Royal Society B, 273, 835–841.Google Scholar
  54. Hall, S. S. (2008). Last of the Neanderthals. National Geographic, 214, 34–59.Google Scholar
  55. Harvey, P. H., & Clutton-Brock, T. H. (1985). Life history variation in primates. Evolution, 39, 559–581.Google Scholar
  56. Hawkes, K. (2003). Grandmothers and the evolution of human longevity. American Journal of Human Biology, 15, 380–400.Google Scholar
  57. Hawkes, K. (2006a). Life history theory and human evolution. A chronicle of ideas and findings. In K. Hawkes & R. R. Paine (Eds.), The evolution of human life history (pp. 45–93). Santa Fe: School of American Research Press.Google Scholar
  58. Hawkes, K. (2006b). Slow life histories and human evolution. In K. Hawkes & R. R. Paine (Eds.), The evolution of human life history (pp. 95–126). Santa Fe: School of American Research Press.Google Scholar
  59. Hawkes, K., & Paine, R. R. (Eds.). (2006). The evolution of human life history. Santa Fe: School of American Research Press.Google Scholar
  60. Hawkes, K., Blurton Jones, N. G., Alvarez, H., & Charnov, E. L. (1998). Grandmothering, menopause, and the evolution of human life histories. Proceedings of the National Academy of Sciences, USA, 95, 1226–1339.Google Scholar
  61. Hellman, M. (1943). The phase of development concerned with erupting the permanent teeth. American Journal of Orthodontics, 29, 507–526.Google Scholar
  62. Hochberg, Z. (2008). Juvenility in the context of life history theory. Archives of Disease in Childhood, 93, 534–539.Google Scholar
  63. Janson, C. H., & van Schaik, C. P. (1993). Ecological risk aversion in juvenile primates: slow and steady wins the race. In M. E. Pereira & L. A. Fairbanks (Eds.), Juvenile primates: life history, development, and behavior (pp. 57–74). New York: Oxford University Press.Google Scholar
  64. Kaplan, H. S., & Robson, A. J. (2002). The emergence of humans: the coevolution of intelligence and longevity with inter-generational transfers. Proceedings of the National Academy of Science USA, 99, 10221–10226.Google Scholar
  65. Kaplan, H. S., Hill, K., Lancaster, J. B., & Hurtado, A. M. (2000). A theory of human life history evolution: diet, intelligence and longevity. Evolutionary Anthropologist, 9, 156–185.Google Scholar
  66. Kaplan, H. S., Lancaster, J. B., & Robson, A. J. (2003). Embodied capital and the evolutionary economics of the human lifespan. Population and Development Review, Supplement, 29, 152–182.Google Scholar
  67. Kappelman, J. (1996). The evolution of body mass and relative brain size in fossil hominids. Journal of Human Evolution, 30, 243–276.Google Scholar
  68. Katzenberg, M., Herring, D. A., & Saunders, S. R. (1996). Weaning and infant mortality: evaluating the skeletal evidence. American Journal of Physical Anthropology, 39, 177–199.Google Scholar
  69. Kennedy, G. E. (2003). Paleolithic grandmothers? Life history theory and early Homo. Journal of the Royal Anthropological Institute (n.s.), 9, 549–572.Google Scholar
  70. Klein, R. G. (1989). The human career. Chicago: University of Chicago Press.Google Scholar
  71. Konigsberg, L. W., & Herrmann, N. P. (2006). The osteological evidence for human longevity in the recent past. In K. Hawkes & R. R. Paine (Eds.), The evolution of human life history (pp. 267–306). Santa Fe: School of American Research Press.Google Scholar
  72. Kuhn, S. L., & Stiner, M. C. (2006). What’s a mother to do? The division of labor among Neandertals and modern humans in Eurasia. Current Anthropology, 47, 953–980.Google Scholar
  73. Kuykendall, K. L., & Conroy, G. C. (1996). Permanent tooth calcification in chimpanzees (Pan troglodytes): patterns and polymorphisms. American Journal of Physical Anthropology, 99, 159–174.Google Scholar
  74. Laird, A. K. (1967). Evolution of the human growth curve. Growth, 31, 345–55.Google Scholar
  75. Lancaster, J. B., & Lancaster, C. S. (1983). Parental investment: the hominid adaptation. In D. J. Ormer (Ed.), How humans adapt (pp. 33–65). Washington: Smithsonian Institution Press.Google Scholar
  76. Leigh, S. R. (1996). Evolution of human growth spurts. American Journal of Physical Anthropology, 101, 455–474.Google Scholar
  77. Leigh, S. R. (2001). The evolution of human growth. Evolutionary Anthropology, 10, 223–236.Google Scholar
  78. Leigh, S. R. (2004). Brain growth, life history and cognition in primate and human evolution. American Journal of Primatology, 62, 139–164.Google Scholar
  79. Leigh, S. R. (2006). Brain ontogeny and life history in Homo erectus. Journal of Human Evolution, 50, 104–108.Google Scholar
  80. Leigh, S. R., & Blomquist, G. E. (2007). Life history. In C. J. Campbell, A. Fuentes, K. C. MacKinnon, M. Panger, & S. K. Bearder (Eds.), Primates in perspective (pp. 396–407). New York: Oxford University Press.Google Scholar
  81. Leigh, S. R., & Shea, B. T. (1996). Ontogeny of body size variation in African apes. American Journal of Physical Anthropology, 99, 43–65.Google Scholar
  82. Leonard, W. R., & Robertson, M. L. (1994). Evolutionary perspectives on human nutrition: the influence of brain and body size on diet and metabolism. American Journal of Human Biology, 6, 77–88.Google Scholar
  83. Leonard, W. R., & Robertson, M. L. (1997). Comparative primate energetics and hominid evolution. American Journal of Physical Anthropology, 102, 265–281.Google Scholar
  84. Leonard, W. R., Robertson, M. L., Snodgrass, J. J., & Kuzawa, C. W. (2003). Metabolic correlates of hominid brain evolution. Comparative Biochemistry and Physiology, Part A, 136, 5–15.Google Scholar
  85. Liversidge, H. (2003). Variation in modern human dental development. In J. L. Thompson, G. E. Krovitz, & A. J. Nelson (Eds.), Patterns of growth and development in the genus Homo (pp. 73–113). Cambridge: Cambridge University Press.Google Scholar
  86. Macchiarelli, R., Bondioli, L., Debéhath, A., Mazurier, A., Tournepiche, J.-F., Birch, W., et al. (2006). How Neandertal molar teeth grew. Nature, 444, 748–751.Google Scholar
  87. Mace, R. (2000). Evolutionary ecology of human life history. Animal Behaviour, 59, 1–10.Google Scholar
  88. MacGregor, A. B. (1964). The Le Moustier mandible: An explanation for the deformation of the bone and failure of eruption of a permanent canine tooth. Man, 64, 151–152.Google Scholar
  89. Mann, A., Lampl, M., & Monge, J. M. (1996). The evolution of childhood: dental evidence for the appearance of human maturation patterns. American Journal of Physical Anthropology, Supplement, 21, 156.Google Scholar
  90. Maresh, M. M. (1970). Measurements from roentgenograms. In R. W. McCammon (Ed.), Human growth and development (pp. 157–200). Springfield: Charles C. Thomas.Google Scholar
  91. McHenry, H. M. (1978). Fore- and hind-limb proportions in Plio-Pleistocene hominids. American Journal of Physical Anthropology, 49, 15–22.Google Scholar
  92. McHenry, H. M. (1991). Femoral lengths and stature in Plio-Pleistocene hominids. American Journal of Physical Anthropology, 85, 148–158.Google Scholar
  93. Mellars, P. (1996). The Neanderthal legacy. Princeton: Princeton University Press.Google Scholar
  94. Migliano, A. B., Vinicius, L., & Lahr, M. M. (2007). Life history trade-offs explain the evolution of human pygmies. Proceedings of the National Academy of Science USA, 104, 20216–20219.Google Scholar
  95. Moggi-Cecchi, J. (2001). Questions of growth. Nature, 414, 595–596.Google Scholar
  96. Nelson, A. J., & Thompson, J. L. (1999). Growth and development in Neandertals and other fossil hominids: Implications for hominid phylogeny and the evolution of hominid ontogeny. In R. D. Hoppa & C. M. FitzGerald (Eds.), Growth in the past: Studies from bones and teeth (pp. 88–110). Cambridge: Cambridge University Press.Google Scholar
  97. Nelson, A. J., & Thompson, J. L. (2002). Neanderthal adolescent postcranial growth. In N. Minugh-Purvis & K. McNamara (Eds.), Human evolution through developmental change (pp. 442–463). Baltimore: John Hopkins University Press.Google Scholar
  98. Nelson, A. J., & Thompson, J. L. (2005). Le Moustier 1 and the interpretation of stages in Neandertal growth and development. In H. Ullrich (Ed.), The Neandertal adolescent Le Moustier 1: New aspects, new results (pp. 328–338). Berlin: Staatliche Museen zu Berlin, Preußischer Kulturbesiz.Google Scholar
  99. Olejniczak, A. J., Smith, T. M., Feeney, R. N. M., Macchiarelli, R., Mazurier, A., Bondioli, L., et al. (2008). Dental tissue proportions and enamel thickness in Neandertal and modern human molars. Journal of Human Evolution, 55, 12–23.Google Scholar
  100. Pagel, M. D., & Harvey, P. H. (1993). Evolution of the juvenile period in mammals. In M. E. Pereira & L. A. Fairbanks (Eds.), Juvenile primates: Life history, development, and behavior (pp. 528–537). New York: Oxford University Press.Google Scholar
  101. Paine, R. R., & Boldsen, J. L. (2006). Paleodemographic data and why understanding Holocene demography is essential to understanding human life history evolution in the Pleistocene. In K. Hawkes & R. R. Paine (Eds.), The evolution of human life history (pp. 307–330). Santa Fe: School of American Research Press.Google Scholar
  102. Pereira, M. E., & Altmann, J. (1985). Development of social behavior in free-living nonhuman primates. In E. S. Watts (Ed.), Nonhuman primate models for growth and development (pp. 217–309). New York: Alan R Liss.Google Scholar
  103. Ponce de León, M. S., Golovanova, L., Doronichev, V., Romanova, G., Akazawa, T., Kondo, O., et al. (2008). Neanderthal brain size at birth provides insights into the evolution of human life history. Proceedings of the National Academy of Science USA, 105, 13764–13768.Google Scholar
  104. Ramirez-Rozzi, F. V., & Bermúdez de Castro, J. M. (2004). Surprisingly rapid growth in Neanderthals. Nature, 428, 936–939.Google Scholar
  105. Ramsay, H. L., Weaver, D. S., & Seidler, H. (2005). Bone histology in the Le Moustier Neandertal child. In H. Ullrich (Ed.), The Neandertal adolescent Le Moustier 1: New aspects, new results (pp. 282–292). Berlin: Staatliche Museen zu Berlin, Preußischer Kulturbesiz.Google Scholar
  106. Reiches, M. W., Ellison, P. T., Lipson, S. F., Sharrock, K. C., & Gardiner, E. (2009). Pooled energy budget and human life history. American Journal of Human Biology, 21, 421–429.Google Scholar
  107. Reid, D. J., Guatelli-Steinberg, D., & Walton, P. (2008). Variation in modern human premolar enamel formation times: implications for Neandertals. Journal of Human Evolution, 54, 225–235.Google Scholar
  108. Robson, S. L., & Wood, B. (2008). Hominin life history: reconstruction and evolution. Journal of Anatomy, 212, 394–425.Google Scholar
  109. Robson, S. L., van Schaik, C. P., & Hawkes, K. (2006). The derived features of human life history. In K. Hawkes & R. R. Paine (Eds.), The evolution of human life history (pp. 17–44). Santa Fe: School of American Research Press.Google Scholar
  110. Rosenberg, K. R. (1992). The evolution of modern human childbirth. Yearbook of Physical Anthropology, 35, 89–124.Google Scholar
  111. Rosenfeld, R. G., & Nicodemus, B. C. (2003). The transition from adolescence to adult life: physiology of the “transition” phase and its evolutionary basis. Hormone Research, 60, 74–77.Google Scholar
  112. Ruff, C. (2003). Ontogenetic adaptation to bipedalism: age changes in femoral to humeral length and strength proportions in humans, with a comparison to baboons. Journal of Human Evolution, 45, 317–349.Google Scholar
  113. Ruff, C. (2008). Femoral/humeral strength in early African Homo erectus. Journal of Human Evolution, 54, 383–390.Google Scholar
  114. Ruff, C. (2009). Relative limb strength and locomotion in Homo habilis. American Journal of Physical Anthropology, 138, 90–100.Google Scholar
  115. Ruff, C. (2010). Body size and body shape in early hominins: implications of the Gona pelvis. Journal of Human Evolution, 58, 166–178.Google Scholar
  116. Ruff, C. B., Trinkaus, E., Walker, A., & Larsen, C. S. (1993). Postcranial robusticity in Homo, I: temporal trends and mechanical interpretation. American Journal of Physical Anthropology, 91, 21–53.Google Scholar
  117. Ruff, C. B., Walker, A., & Trinkaus, E. (1994). Postcranial robusticity in Homo, III: ontogeny. American Journal of Physical Anthropology, 93, 35–54.Google Scholar
  118. Ruff, C. B., Trinkaus, E., & Holliday, T. W. (1997). Body mass and encephalization in Pleistocene Homo. Nature, 387, 173–176.Google Scholar
  119. Sacher, G. A. (1959). Relation of lifespan to brain weight and body weight in mammals. In G. E. W. Wolstenholme & M. O’Connor (Eds.), The lifespan of animals. Ciba Foundation Colloquia on Ageing, 5 (pp. 115–133). London: Churchill Press.Google Scholar
  120. Sacher, G. A. (1975). Maturation and longevity in relation to cranial capacity in hominid evolution. In R. H. Tuttle (Ed.), Primate functional morphology and evolution (pp. 417–441). The Hague: Mouton.Google Scholar
  121. Scheurer, L., & Black, S. (2000). Developmental juvenile osteology. London: Academic.Google Scholar
  122. Schoetensack, O. (1908). Der Unterkiefer des Homo heidelbergensis aus den Sanden von Mauer bei Heidelberg. Leipzig: Wilhelm Engelmann.Google Scholar
  123. Schultz, A. H. (1960). Age changes in primate and their modification in man. In J. M. Tanner (Ed.), Human growth (pp. 1–20). Oxford: Pergamon Press.Google Scholar
  124. Sellen, D. W. (2006). Lactation, complementary feeding, and human life history. In K. Hawkes & R. R. Paine (Eds.), The evolution of human life history (pp. 155–196). Santa Fe: School of American Research Press.Google Scholar
  125. Simpson, S. W., Russell, K. F., & Lovejoy, C. O. (1996). Comparison of diaphyseal growth between the Libben population and the Hamann-Todd chimpanzees sample. American Journal of Physical Anthropology, 99, 67–78.Google Scholar
  126. Simpson, S. W., Quade, J., Levin, N. E., Butler, R., Dupont-Nivet, G., Everett, M., et al. (2008). A female Homo erectus pelvis from Gona, Ethiopia. Science, 322, 1089–1092.Google Scholar
  127. Skinner, M. F. (1997). Dental wear in immature late Pleistocene hominins. Journal of Archaeological Science, 24, 677–700.Google Scholar
  128. Skinner, M. M., & Wood, B. (2006). The evolution of modern human life history. In K. Hawkes & R. R. Paine (Eds.), The evolution of human life history (pp. 331–364). Santa Fe: School of American Research Press.Google Scholar
  129. Smith, B. H. (1986). Dental development in Australopithecus and early Homo. Nature, 323, 327–330.Google Scholar
  130. Smith, B. H. (1989). Dental development as a measure of life history in primates. Evolution, 43, 373–392.Google Scholar
  131. Smith, B. H. (1991). Dental development and the evolution of life history in Hominidae. American Journal of Physical Anthropology, 86, 157–174.Google Scholar
  132. Smith, B. H. (1992). Life history and the evolution of human maturation. Evolutionary Anthropology, 1, 134–142.Google Scholar
  133. Smith, B. H. (1993). The physiological age of KNM-WT 15000. In A. Walker & R. Leakey (Eds.), The Nariokotome Homo erectus skeleton (pp. 195–220). Cambridge: Harvard University Press.Google Scholar
  134. Smith, B. H., & Tompkins, R. L. (1995). Toward a life history of the Hominidae. Annual Review of Anthropology, 24, 257–279.Google Scholar
  135. Smith, T. M., Toussaint, M., Reid, D. J., Olejniczak, A. J., & Hublin, J.-J. (2007). Rapid dental development in a Middle Paleolithic Belgian Neanderthal. Proceedings of the National Academy of Science USA, 104, 20220–20225.Google Scholar
  136. Smith, T. M., Harvati, K., Olejniczak, A. J., Reid, D. J., Hublin, J.-J., & Panagopoulou, E. (2009). Brief communication: Dental development and enamel thickness in the Lakonis Neanderthal molar. American Journal of Physical Anthropology, 138, 112–118.Google Scholar
  137. Sorensen, M. V., & Leonard, W. R. (2001). Neandertal energetics and foraging efficiency. Journal of Human Evolution, 40, 483–495.Google Scholar
  138. Spoor, F., Leakey, M. G., Gathogo, P. N., Brown, F. H., Antón, S. C., McDougall, I., et al. (2007). Implications of new early Homo fossils from Ileret, east of Lake Turkana, Kenya. Nature, 448, 668–691.Google Scholar
  139. Stearns, S. C., & Koella, J. C. (1986). The evolution of phenotypic plasticity in life-history traits: predictions of reaction norms for age and size at maturity. Evolution, 40, 893–913.Google Scholar
  140. Strier, K. B. (2007). Primate behavioral ecology. San Francisco: Allyn and Bacon.Google Scholar
  141. Stringer, C. B., & Gamble, C. (1993). In search of the Neanderthals. New York: Thames and Hudson.Google Scholar
  142. Tanner, J. M. (1990). Foetus into man. Cambridge: Harvard University Press.Google Scholar
  143. Tardieu, C. (1998). Short adolescence in early hominids: infantile and adolescent growth of the human femur. American Journal of Physical Anthropology, 107, 163–178.Google Scholar
  144. Thieme, H. (1997). Lower Paleolithic hunting spears from Germany. Nature, 385, 807–810.Google Scholar
  145. Thompson, J. L. (1998). Neanderthal growth and development. In S. J. Ulijaszek, F. E. Johnston, & M. A. Preece (Eds.), The Cambridge encyclopedia of human growth and development (pp. 106–107). Cambridge: Cambridge University Press.Google Scholar
  146. Thompson, J. L. (2005). Le Moustier 1 and its place among the Neandertals. In H. Ullrich (Ed.), The Neandertal adolescent Le Moustier 1: New aspects, new results (pp. 311–320). Berlin: Staatliche Museen zu Berlin, Preußischer Kulturbesiz.Google Scholar
  147. Thompson, J. L., & Bilsborough, A. (1997). The current state of the Le Moustier 1 skull. Acta Praehistorica et Archaeologica, 29, 17–38.Google Scholar
  148. Thompson, J. L., & Bilsborough, A. (2005). The skull of Le Moustier 1. In H. Ullrich (Ed.), The Neandertal Adolescent Le Moustier 1: New aspects, new results (pp. 79–94). Berlin: Staatliche Museen zu Berlin, Preußischer Kulturbesiz.Google Scholar
  149. Thompson, J. L., & Illerhaus, B. (1998). A new reconstruction of the Le Moustier 1 skull and investigation of internal structures using 3-D-mCT data. Journal of Human Evolution, 35, 647–665.Google Scholar
  150. Thompson, J. L., & Illerhaus, B. (2000). CT reconstruction and analysis of the Le Moustier 1 Neanderthal. In C. B. Stringer, R. N. E. Barton, & J. C. Finlayson (Eds.), Neanderthals on the edge (pp. 249–255). Oxford: Oxbow Books.Google Scholar
  151. Thompson, J. L., & Nelson, A. J. (2000). The place of Neandertals in the evolution of hominid patterns of growth and development. Journal of Human Evolution, 38, 475–495.Google Scholar
  152. Thompson, J. L., & Nelson, A. J. (2001). Relative postcranial and cranial growth in Neandertals and modern humans. American Journal of Physical Anthropology, 114(S32), 149.Google Scholar
  153. Thompson, J. L., & Nelson, A. J. (2005a). Estimated age at death and sex of Le Moustier 1. In H. Ullrich (Ed.), The Neandertal adolescent Le Moustier 1: New aspects, new results (pp. 208–224). Berlin: Staatliche Museen zu Berlin, Preußischer Kulturbesiz.Google Scholar
  154. Thompson, J. L., & Nelson, A. J. (2005b). The postcranial skeleton of Le Moustier 1. In H. Ullrich (Ed.), The Neandertal adolescent Le Moustier 1: New aspects, new results (pp. 265–281). Berlin: Staatliche Museen zu Berlin, Preußischer Kulturbesiz.Google Scholar
  155. Thompson, J. L., Nelson, A. J., & Illerhaus, B. (2002). 3D imaging of internal structures of the skull of the adolescent Neandertal from Le Moustier. In B. Mafart & H. Delingette (Eds.), Three-dimensional imaging in paleoanthropology and prehistoric archeology (pp. 55–61). Oxford: British Archeological Reports, International Series 1049.Google Scholar
  156. Thompson, J. L., Nelson, A. J., & Illerhaus, B. (2003). A study of the Le Moustier 1 Neandertal: Summary of results. In A. Hoffmann (Ed.), Le Moustier und Combe Capelle (pp. 65–73). Berlin: Staatliche Museen zu Berlin, Preußischer Kulturbesiz.Google Scholar
  157. Trinkaus, E. (1981). Neandertal limb proportions and cold adaptation. In C. B. Stringer (Ed.), Aspects of human evolution (pp. 187–224). London: Taylor and Francis.Google Scholar
  158. Trinkaus, E. (1982). Evolutionary continuity among Archaic Homo sapiens. In A. Rohen (Ed.), The transition from Lower to Middle Palaeolithic and the origin of modern man (pp. 301–314). Oxford: British Archaeological Report International Series 151.Google Scholar
  159. Trinkaus, E. (1983). The Shanidar Neandertals. New York: Academic.Google Scholar
  160. Trinkaus, E. (1995). Neanderthal mortality patterns. Journal of Archeological Science, 22, 121–142.Google Scholar
  161. Trinkaus, E. (1997). Appendicular robusticity and the paleobiology of modern human emergence. Proceedings of the National Academy of Science USA, 94, 13367–13373.Google Scholar
  162. Trinkaus, E., & Zimmerman, M. R. (1982). Trauma among the Shanidar Neandertals. American Journal of Physical Anthropology, 57, 61–76.Google Scholar
  163. Trinkaus, E., Churchill, S. E., & Ruff, C. B. (1994). Postcranial robusticity in Homo, II: humeral bilateral asymmetry and bone plasticity. American Journal of Physical Anthropology, 93, 1–34.Google Scholar
  164. Ullrich, H. (1955). Paläolithische Menschenreste aus der Sowjet-union: Das Moustierian-kind von Starselje (Krim). Zeischrift für Morphologie und Anthropologie, 47, 91–98.Google Scholar
  165. Ullrich, H. (Ed.). (2005a). The Neandertal adolescent Le Moustier 1: New aspects, new results. Berlin: Staatliche Museen zu Berlin, Preußischer Kulturbesiz.Google Scholar
  166. Ullrich, H. (2005b). Cut marks and other bone modifications of the Le Moustier 1 remains. In H. Ullrich (Ed.), The Neandertal adolescent Le Moustier 1: New aspects, new results (pp. 293–307). Berlin: Staatliche Museen zu Berlin, Preußischer Kulturbesiz.Google Scholar
  167. van Schaik, C. P., Barrickman, N., Bastian, M. L., Krakauer, E. B., & vam Noordwijk, M. A. (2006). Primate life histories and the role of brains. In K. Hawkes & R. R. Paine (Eds.), The evolution of human life history (pp. 127–154). Santa Fe: School of American Research Press.Google Scholar
  168. Walker, A., & Leakey, R. (1993). The Nariokotome Homo erectus skeleton. Cambridge: Harvard University Press.Google Scholar
  169. Walker, A., & Ruff, C. (1993). Reconstruction of the pelvis. In A. Walker & R. E. F. Leakey (Eds.), The Nariokotome Homo erectus skeleton (pp. 221–233). Cambridge: Harvard University Press.Google Scholar
  170. Walker, R., Gurven, M., Hill, K., Migliano, A., Chagnon, N., De Souza, R., et al. (2006). Growth rates and life histories in twenty-two small-scale societies. American Journal of Human Biology, 18, 95–311.Google Scholar
  171. Watts, E. S. (1985). Adolescent growth and development of monkeys, apes and humans. In E. S. Watts (Ed.), Nonhuman primate models for human growth and development (pp. 41–65). New York: Alan R. Liss.Google Scholar
  172. Watts, E. S. (1986). The evolution of the human growth curve. In F. Faulkner & J. M. Tanner (Eds.), Human growth, Vol. 1 (2nd ed., pp. 153–156). New York: Plenum Press.Google Scholar
  173. Weinert, H. (1925). Der Schädel des eiszeitlichen Menschen von Le Moustier in neuer Zusammensetzung. Berlin: Springer.Google Scholar
  174. White, S. H. (1996). The child’s entry into the “age of reason.” In A. J. Sameroff & M. M. Haith (Eds.), The five to seven year shift: The age of reason and responsibility (pp. 17–30). Chicago: University of Chicago Press.Google Scholar
  175. Williams, G. C. (1966). Adaptation and natural selection: A critique of some current evolutionary thought. Princeton: Princeton University Press.Google Scholar
  176. Wolpoff, M. H. (1999). Paleoanthropology (2nd ed.). Boston: McGraw-Hill.Google Scholar
  177. Wood, B., & Collard, M. (1999). The human genus. Science, 284, 65–71.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of AnthropologyUniversity of Nevada, Las VegasLas VegasUSA
  2. 2.Department of AnthropologyThe University of Western OntarioLondonCanada

Personalised recommendations