Head and Neck Pathology

, Volume 12, Issue 1, pp 136–144 | Cite as

Clinicopathologic and Molecular Characteristics of Familial Cherubism with Associated Odontogenic Tumorous Proliferations

  • Prokopios P. Argyris
  • Rajaram Gopalakrishnan
  • Ying Hu
  • Ernst J. Reichenberger
  • Ioannis G. Koutlas
Case Report


Cherubism is a rare autosomal dominant condition affecting the jaws and caused by mutations in the gene encoding for the adapter protein SH3BP2 that maps to chromosome 4p16.3. Cherubism is characterized by symmetrically developing bone lesions in the maxilla and mandible. The lesions have been radiographically and histopathologically well-described. Here, we present a family with cherubism with two of its members featuring odontogenic tumorous proliferations in association with persistent central giant cell lesions (CGCL). Specifically, the proband, a 25-year-old male, developed a radiolucent lesion characterized histologically by central odontogenic fibroma-like proliferation in association with a CGCL component, while his mother, at age 57, was diagnosed with primary intraosseous odontogenic carcinoma with areas of benign fibro-osseous lesions. In both patients the lesions occurred in the anterior mandible and presented with clinical enlargement. The son underwent incisional biopsy and did not have additional treatment. His mother underwent extensive mandibulectomy due to widespread tumor. The son has two affected children with classic cherubism while a third child at age 5, had not shown any features of the disease. Mutation analysis of three affected members resulted in the identification of a heterozygous mutation in SH3BP2 (c.1244G>C; p.Arg415Pro). To the best of our knowledge, association of cherubism with odontogenic neoplastic lesions has hitherto not been reported in the literature, thus suggesting a relationship between cherubism with disturbed odontogenesis.


Cherubism SH3BP2 Benign giant cell lesion Odontogenic fibroma Hybrid COF/CGCL Odontogenic carcinoma Intraosseous squamous cell carcinoma Squamous odontogenic tumor 



The authors are grateful to Mr. Brian Dunnette of the University of Minnesota for his assistance with the illustrations.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Jones WA, Gerrie J, Pritchard J. Cherubism—familial fibrous dysplasia of the jaws. J Bone Joint Surg Br. 1950;32-B:334–47.CrossRefPubMedGoogle Scholar
  2. 2.
    Dinckan N, Guven Y, Kayserili H, Aktoren O, Uyguner OZ. A novel c.1255G>T (p.D419Y) mutation in SH3BP2 gene causes cherubism in a Turkish family. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;114:e42–e6.CrossRefPubMedGoogle Scholar
  3. 3.
    Silva GC, Gomez RS, Vieira TC, Silva EC. Cherubism: long-term follow-up of 2 patients in whom it regressed without treatment. Br J Oral Maxillofac Surg. 2007;45:567–70.CrossRefPubMedGoogle Scholar
  4. 4.
    Li CY, Yu SF. A novel mutation in the SH3BP2 gene causes cherubism: case report. BMC Med Genet. 2006;7:84.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mangion J, Rahman N, Edkins S, Barfoot R, Nguyen T, Sigurdsson A, et al. The gene for cherubism maps to chromosome 4p16.3. Am J Hum Genet. 1999;65:151–7.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Preda L, Dinca O, Bucur A, Dragomir C, Severin E. Identical mutation in SH3BP2 gene causes clinical phenotypes with different severity in mother and daughter—case report. Mol Syndromol. 2010;1:87–90.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Reichenberger EJ, Levine MA, Olsen BR, Papadaki ME, Lietman SA. The role of SH3BP2 in the pathophysiology of cherubism. Orphanet J Rare Dis. 2012;7(Suppl 1):S5.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ueki Y, Tiziani V, Santanna C, Fukai N, Maulik C, Garfinkle J, et al. Mutations in the gene encoding c-Abl-binding protein SH3BP2 cause cherubism. Nat Genet. 2001;28:125–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Meng XM, Yu SF, Yu GY. Clinicopathologic study of 24 cases of cherubism. Int J Oral Maxillofac Surg. 2005;34:350–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Carroll AL, Sullivan TJ. Orbital involvement in cherubism. Clin Exp Ophthalmol. 2001;29:38–40.CrossRefPubMedGoogle Scholar
  11. 11.
    Battaglia A, Merati A, Magit A. Cherubism and upper airway obstruction. Otolaryngol Head Neck Surg. 2000;122:573–4.PubMedGoogle Scholar
  12. 12.
    Ladhani S, Sundaram P, Joshi JM. Sleep disordered breathing in an adult with cherubism. Thorax. 2003;58:552.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tsodoulos S, Ilia A, Antoniades K, Angelopoulos C. Cherubism: a case report of a three-generation inheritance and literature review. J Oral Maxillofac Surg. 2014;72:405.e1–9.CrossRefGoogle Scholar
  14. 14.
    Hitomi G, Nishide N, Mitsui K. Cherubism: diagnostic imaging and review of the literature in Japan. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1996;81:623–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Beaman FD, Bancroft LW, Peterson JJ, Kransdorf MJ, Murphey MD, Menke DM. Imaging characteristics of cherubism. AJR Am J Roentgenol. 2004;182:1051–4.CrossRefPubMedGoogle Scholar
  16. 16.
    Neville B, Damm D, Allen C, Chi A. Oral and maxillofacial pathology. 4th ed. St. Louis: Elsevier, Inc; 2016.Google Scholar
  17. 17.
    Tosios KI, Gopalakrishnan R, Koutlas IG. So-called hybrid central odontogenic fibroma/central giant cell lesion of the jaws. A report on seven additional cases, including an example in a patient with cherubism, and hypotheses on the pathogenesis. Head Neck Pathol. 2008;2:333–8.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Younis RH, Scheper MA, Lindquist CC, Levy B. Hybrid central odontogenic fibroma with giant cell granuloma-like component: case report and review of literature. Head Neck Pathol. 2008;2:222–6.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Papadaki ME, Lietman SA, Levine MA, Olsen BR, Kaban LB, Reichenberger EJ. Cherubism: best clinical practice. Orphanet J Rare Dis. 2012;7(Suppl 1):S6.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Katz JO, Dunlap CL, Ennis RL. Cherubism: report of a case showing regression without treatment. J Oral Maxillofac Surg. 1992;50:301–3.CrossRefPubMedGoogle Scholar
  21. 21.
    Sekerci AE, Balta B, Dundar M, Hu Y, Reichenberger EJ, Etoz OA, et al. A c.1244G>A (p.Arg415Gln) mutation in SH3BP2 gene causes cherubism in a Turkish family: report of a family with review of the literature. Med Oral Patol Oral Cir Bucal. 2014;19:e340–e4.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lenouvel D, Chapireau D, Bentley R. Late reactivation of cherubism in a patient with new-onset polycystic ovary syndrome. J Oral Maxillofac Surg. 2015;73:1957–61.CrossRefPubMedGoogle Scholar
  23. 23.
    Colombo F, Cursiefen C, Neukam FW, Holbach LM. Orbital involvement in cherubism. Ophthalmology. 2001;108:1884–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Allen CM, Hammond HL, Stimson PG. Central odontogenic fibroma, WHO type. A report of three cases with an unusual associated giant cell reaction. Oral Surg Oral Med Oral Pathol. 1992;73:62–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Odell EW, Lombardi T, Barrett AW, Morgan PR, Speight PM. Hybrid central giant cell granuloma and central odontogenic fibroma-like lesions of the jaws. Histopathology. 1997;30:165–71.CrossRefPubMedGoogle Scholar
  26. 26.
    Taylor AM, Flores VB, Franco MAD. Combined central odontogenic fibroma and giant cell granuloma-like lesion of the mandible: report of a case and review of the literature. J Oral Maxillofac Surg. 1999;57:1258–62.CrossRefGoogle Scholar
  27. 27.
    de Lima MeD, de Aquino Xavier FC, Vanti LA, de Lima PS, de Sousa SC. Hybrid central giant cell granuloma and central odontogenic fibroma-like lesion of the mandible. Otolaryngol Head Neck Surg. 2008;139:867–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Kawakami T, Antoh M, Minemura T. Giant cell reaction to ameloblastoma: an immunohistochemical and ultrastructural study of a case. J Oral Maxillofac Surg. 1989;47:737–41.CrossRefPubMedGoogle Scholar
  29. 29.
    Richard BM, Thyveetil M, Sharif H, Athanasou NA. Ameloblastoma with stromal multinucleated giant cells. Histopathology. 1994;25:497–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Yoon JH, Kim SG, Lee SH, Kim J. Simultaneous occurrence of an odontogenic keratocyst and giant cell granuloma-like lesion in the mandible. Int J Oral Maxillofac Surg. 2004;33:615–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Ide F, Shimoyama T, Horie N, Shimizu S. Intraosseous squamous cell carcinoma arising in association with a squamous odontogenic tumour of the mandible. Oral Oncol. 1999;35:431–4.CrossRefPubMedGoogle Scholar
  32. 32.
    Irié T, Ogawa I, Takata T, Toyosawa S, Saito N, Akiba M, et al. Sclerosing odontogenic carcinoma with benign fibro-osseous lesion of the mandible: an extremely rare case report. Pathol Int. 2010;60:694–700.CrossRefPubMedGoogle Scholar
  33. 33.
    Geraldo AF, Dos Santos CM, Tavares J, Fernandes Sousa R, Campos A, Farias JP, et al. Benign fibro-osseous lesions of the craniofacial complex with aneurysmal bone cyst formation. Acta Med Port. 2012;25(Suppl 1):55–9.PubMedGoogle Scholar
  34. 34.
    Chadwick JW, Alsufyani NA, Lam EW. Clinical and radiographic features of solitary and cemento-osseous dysplasia-associated simple bone cysts. Dentomaxillofac Radiol. 2011;40:230–5.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kaplan I, Manor I, Yahalom R, Hirshberg A. Central giant cell granuloma associated with central ossifying fibroma of the jaws: a clinicopathologic study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103:e35–41.CrossRefPubMedGoogle Scholar
  36. 36.
    Li BB, Xie XY, Jia SN. Adenomatoid odontogenic tumor with fibro-osseous reaction in the surrounding tissue. J Craniofac Surg. 2013;24:e100–1.CrossRefPubMedGoogle Scholar
  37. 37.
    Naidu A, Slater LJ, Hamao-Sakamoto A, Waters P, Kessler HP, Wright JM. Adenomatoid odontogenic tumor with peripheral cemento-osseous reactive proliferation: report of 2 cases and review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122:e86–92.CrossRefPubMedGoogle Scholar
  38. 38.
    de la Fuente MA, Kumar L, Lu B, Geha RS. 3BP2 deficiency impairs the response of B cells, but not T cells, to antigen receptor ligation. Mol Cell Biol. 2006;26:5214–25.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Foucault I, Le Bras S, Charvet C, Moon C, Altman A, Deckert M. The adaptor protein 3BP2 associates with VAV guanine nucleotide exchange factors to regulate NFAT activation by the B-cell antigen receptor. Blood. 2005;105:1106–13.CrossRefPubMedGoogle Scholar
  40. 40.
    Jevremovic D, Billadeau DD, Schoon RA, Dick CJ, Leibson PJ. Regulation of NK cell-mediated cytotoxicity by the adaptor protein 3BP2. J Immunol. 2001;166:7219–28.CrossRefPubMedGoogle Scholar
  41. 41.
    Sada K, Miah SM, Maeno K, Kyo S, Qu X, Yamamura H. Regulation of FcepsilonRI-mediated degranulation by an adaptor protein 3BP2 in rat basophilic leukemia RBL-2H3 cells. Blood. 2002;100:2138–44.CrossRefPubMedGoogle Scholar
  42. 42.
    Aliprantis AO, Ueki Y, Sulyanto R, Park A, Sigrist KS, Sharma SM, et al. NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism. J Clin Invest. 2008;118:3775–89.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ueki Y, Lin CY, Senoo M, Ebihara T, Agata N, Onji M, et al. Increased myeloid cell responses to M-CSF and RANKL cause bone loss and inflammation in SH3BP2 “cherubism” mice. Cell. 2007;128:71–83.CrossRefPubMedGoogle Scholar
  44. 44.
    Liu B, Yu SF, Li TJ. Multinucleated giant cells in various forms of giant cell containing lesions of the jaws express features of osteoclasts. J Oral Pathol Med. 2003;32:367–75.CrossRefPubMedGoogle Scholar
  45. 45.
    Yoshitaka T, Mukai T, Kittaka M, Alford LM, Masrani S, Ishida S, et al. Enhanced TLR-MYD88 signaling stimulates autoinflammation in SH3BP2 cherubism mice and defines the etiology of cherubism. Cell Rep. 2014;8:1752–66.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hyckel P, Berndt A, Schleier P, Clement JH, Beensen V, Peters H, et al. Cherubism—new hypotheses on pathogenesis and therapeutic consequences. J Craniomaxillofac Surg. 2005;33:61–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Thesleff I. Homeobox genes and growth factors in regulation of craniofacial and tooth morphogenesis. Acta Odontol Scand. 1995;53:129–34.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Prokopios P. Argyris
    • 1
  • Rajaram Gopalakrishnan
    • 1
  • Ying Hu
    • 2
  • Ernst J. Reichenberger
    • 2
  • Ioannis G. Koutlas
    • 1
  1. 1.Division of Oral and Maxillofacial Pathology, School of DentistryUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Reconstructive SciencesUniversity of ConnecticutFarmingtonUSA

Personalised recommendations