Skip to main content

NMR resonance assignments for the nucleotide binding domains of the E. coli clamp loader complex γ subunit

Abstract

The E. coli γ clamp loader is a pentameric complex of δ, δ′ and three γ subunits that opens and loads β-clamp proteins onto DNA in an ATP-dependent process essential for efficient DNA replication. ATP binding to the γ subunits promotes conformational changes that enable the clamp loader to bind and open the ring-shaped β-clamp homodimer. Here we report the nearly complete backbone and side-chain 1H, 13C and 15N NMR resonance assignments of the 242-residue truncated γ subunit of the clamp loader complex, which includes the N-terminal mini (domain I) and lid (domain II) domains. This construct represents the nucleotide binding module in the clamp loader complex and provides a model system for studies of conformational rearrangements of the clamp loader induced by nucleotide binding.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Ahmadian MR, Stege P, Scheffzek K, Wittinghofer A (1997) Confirmation of the arginine-finger hypothesis for the GAP-stimulated GTP-hydrolysis reaction of Ras. Nat Struct Biol 4:686–689

    Article  Google Scholar 

  • Berjanskii MV, Wishart DS (2008) Application of the random coil index to studying protein flexibility. J Biomol NMR 40:31–48

    Article  Google Scholar 

  • Blinkowa AL, Walker JR (1990) Programmed ribosomal frameshifting generates the Escherichia coli DNA polymerase III gamma subunit from within the tau subunit reading frame. Nucleic Acids Res 18:1725–1729

    Article  Google Scholar 

  • Bloom LB (2009) Loading clamps for DNA replication and repair. DNA Repair (Amst) 8:570–578

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Flower AM, McHenry CS (1990) The gamma subunit of DNA polymerase III holoenzyme of Escherichia coli is produced by ribosomal frameshifting. Proc Natl Acad Sci USA 87:3713–3717

    Article  ADS  Google Scholar 

  • Hedglin M, Kumar R, Benkovic SJ (2013) Replication clamps and clamp loaders. Cold Spring Harb Perspect Biol 5:a010165

    Article  Google Scholar 

  • Hingorani MM, O’Donnell M (1998) ATP binding to the Escherichia coli clamp loader powers opening of the ring-shaped clamp of DNA polymerase III holoenzyme. J Biol Chem 273:24550–24563

    Article  Google Scholar 

  • Jeruzalmi D, O’Donnell M, Kuriyan J (2001) Crystal structure of the processivity clamp loader gamma (gamma) complex of E. coli DNA polymerase III. Cell 106:429–441

    Article  Google Scholar 

  • Kelch BA (2016) Review: the lord of the rings: structure and mechanism of the sliding clamp loader. Biopolymers 105:532–546

    Article  Google Scholar 

  • Kelch BA, Makino DL, O’Donnell M, Kuriyan J (2012) Clamp loader ATPases and the evolution of DNA replication machinery. BMC Biol 10:34

    Article  Google Scholar 

  • Kodaira M, Biswas SB, Kornberg A (1983) The dnaX gene encodes the DNA polymerase III holoenzyme tau subunit, precursor of the gamma subunit, the dnaZ gene product. Mol Gen Genet 192:80–86

    Article  Google Scholar 

  • Kong XP, Onrust R, O’Donnell M, Kuriyan J (1992) Three-dimensional structure of the beta subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell 69:425–437

    Article  Google Scholar 

  • Lee W, Tonelli M, Markley JL (2015) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31:1325–1327

    Article  Google Scholar 

  • Maciejewski MW, Schuyler AD, Gryk MR, Moraru II, Romero PR, Ulrich EL, Eghbalnia HR, Livny M, Delaglio F, Hoch JC (2017) NMRbox: a resource for biomolecular NMR computation. Biophys J 112:1529–1534

    Article  Google Scholar 

  • Neuwald AF, Aravind L, Spouge JL, Koonin EV (1999) AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genom Res 9:27–43

    Google Scholar 

  • O’Donnell M, Onrust R, Dean FB, Chen M, Hurwitz J (1993) Homology in accessory proteins of replicative polymerases—E. coli to humans. Nucleic Acids Res 21:1–3

    Article  Google Scholar 

  • Oakley AJ, Prosselkov P, Wijffels G, Beck JL, Wilce MC, Dixon NE (2003) Flexibility revealed by the 1.85 A crystal structure of the beta sliding-clamp subunit of Escherichia coli DNA polymerase III. Acta Crystallogr D Biol Crystallogr 59:1192–1199

    Article  Google Scholar 

  • Podobnik M, Weitze TF, O’Donnell M, Kuriyan J (2003) Nucleotide-induced conformational changes in an isolated Escherichia coli DNA polymerase III clamp loader subunit. Structure 11:253–263

    Article  Google Scholar 

  • Pritchard AE, Dallmann HG, Glover BP, McHenry CS (2000) A novel assembly mechanism for the DNA polymerase III holoenzyme DnaX complex: association of δδ’ with DnaX(4) forms DnaX(3)δδ’. EMBO J 19:6536–6545

    Article  Google Scholar 

  • Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog Nucl Magn Reson Spectrosc 34:93–158

    Article  Google Scholar 

  • Shen Y, Bax A (2013) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56:227–241

    Article  Google Scholar 

  • Tsuchihashi Z, Kornberg A (1989) ATP interactions of the tau and gamma subunits of DNA polymerase III holoenzyme of Escherichia coli. J Biol Chem 264:17790–17795

    Article  Google Scholar 

  • Tsuchihashi Z, Kornberg A (1990) Translational frameshifting generates the gamma subunit of DNA polymerase III holoenzyme. Proc Natl Acad Sci U S A 87:2516–2520

    Article  ADS  Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    Article  Google Scholar 

  • Ying J, Delaglio F, Torchia DA, Bax A (2017) Sparse multidimensional iterative lineshape-enhanced (SMILE) reconstruction of both non-uniformly sampled and conventional NMR data. J Biomol NMR 68:101–118

    Article  Google Scholar 

  • Zambrello MA, Schuyler AD, Maciejewski MW, Delaglio F, Bezsonova I, Hoch JC (2018) Nonuniform sampling in multidimensional NMR for improving spectral sensitivity. Methods 138–139:62–68

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health R01GM123239 grant to P.J.B. and D.M.K. The authors thank Mr. Thomas Bregnard for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry M. Korzhnev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahdi, S., Bezsonova, I., Beuning, P.J. et al. NMR resonance assignments for the nucleotide binding domains of the E. coli clamp loader complex γ subunit. Biomol NMR Assign 15, 281–285 (2021). https://doi.org/10.1007/s12104-021-10018-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12104-021-10018-7

Keywords

  • Bacterial DNA replication
  • Pol III holoenzyme
  • Processivity β clamp
  • γ clamp loader complex
  • ATP binding
  • Protein–protein interactions