Skip to main content
Log in

1H, 13C, 15 N backbone resonance assignment of the recognition lobe subdomain 3 (Rec3) from Streptococcus pyogenes CRISPR-Cas9

  • Article
  • Published:
Biomolecular NMR Assignments Aims and scope Submit manuscript

Abstract

Rec3 is a subdomain of the recognition (Rec) lobe within CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-associated protein Cas9 that is involved in nucleic acid binding and is critical to HNH endonuclease activation. Here, we report the backbone resonance assignments of an engineered construct of the Rec3 subdomain from Streptococcus pyogenes Cas9. We also analyze backbone chemical shift data to predict secondary structure and an overall fold that is consistent with that of Rec3 from the full-length S. pyogenes Cas9 protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arbogast LW, Brinson RG, Marino JP (2015) Mapping monoclonal antibody structure by 2D 13C NMR at natural abundance. Anal Chem 87:3556–3561

    Article  Google Scholar 

  • Belato HB, East KW, Lisi GP (2019) 1H, 13C, 15N backbone and side chain resonance assignment of the HNH nuclease from Streptococcus pyogenes CRISPR-Cas9. Biomol NMR Assignments 13(2):367–370

    Article  Google Scholar 

  • Charpentier E, Doudna JA (2013) Biotechnology: Rewriting a genome. Nature 495:50–51

    Article  ADS  Google Scholar 

  • Charpentier E, Marraffini LA (2014) Harnessing CRISPR-Cas9 immunity for genetic engineering. Curr Opin Microbiol 19:114–119

    Article  Google Scholar 

  • Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, Sternberg SH, Joung JK, Yildiz A, Doudna JA (2017) Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550(7676):407–410

    Article  ADS  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–607

    Article  ADS  Google Scholar 

  • East KW, Newton JC, Morzan UN, Narkhede YB, Acharya A, Skeens E, Jogl G, Batista VS, Palermo G, Lisi GP (2020) Allosteric Motions of the CRISPR–Cas9 HNH Nuclease Probed by NMR and Molecular Dynamics. J Am Chem Soc 142(3):1348–1358

    Article  Google Scholar 

  • Jiang F, Zhou K, Ma L, Gressel S, Doudna JA (2015) A Cas9–guide RNA complex preorganized for target DNA recognition. Science 348(6242):1477–1481

    Article  ADS  Google Scholar 

  • Jiang F, Doudna JA (2017) CRISPR-Cas9 Structures and Mechanisms. Annu Rev Biophys 46:505–529

    Article  Google Scholar 

  • Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278

    Article  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  ADS  Google Scholar 

  • Keller, R. (2005). Optimizing the process of nuclear magnetic resonance spectrum analysis and computer aided resonance assignment. (ETH).

  • Lee W, Tonelli M, Markley JL (2015) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31:1325–1327

    Article  Google Scholar 

  • Lisi GP, Loria JP (2016a) Solution NMR Spectroscopy for the Study of Enzyme Allostery. Chem Rev 116:6323–6369

    Article  Google Scholar 

  • Lisi GP, Loria JP (2016b) Using NMR spectroscopy to elucidate the role of molecular motions in enzyme function. Prog Nucl Magn Reson Spectrosc 92–93:1–17

    Article  Google Scholar 

  • Maeder ML, Gersbach CA (2016) Genome-editing technologies for gene and cell therapy. MolTher 24:430–446

    Google Scholar 

  • Martinez-Lage M, Puig-Serra P, Menendez P, Torres-Ruiz R, Rodriguez-Perales S (2018) CRISPR/Cas9 for Cancer Therapy: Hopes and Challenges. Biomedicines 6(4):105

    Article  Google Scholar 

  • Oakes BL, Nadler DC, Flamholz A, Fellmann C, Staahl BT, Doudna JA, Savage DF (2016) Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch. Nat Biotechnol 34:646–651

    Article  Google Scholar 

  • Palermo G, Miao Y, Walker RC, Jinek M, McCammon JA (2016) Striking Plasticity of CRISPR-Cas9 and Key Role of Non-target DNA, as Revealed by Molecular Simulations. ACS central science 2(10):756–763

    Article  Google Scholar 

  • Palermo G, Ricci CG, Fernando A, Basak R, Jinek M, Rivalta I, Batista VS, McCammon JA (2017) Protospacer Adjacent Motif-Induced Allostery Activates CRISPR-Cas9. J Am Chem Soc 139:16028–16031

    Article  Google Scholar 

  • Palermo G, Chen JS, Ricci CG, Rivalta I, Jinek M, Batista VS, Doudna JA, McCammon JA (2018) Key role of the REC lobe during CRISPR-Cas9 activation by ‘sensing’, ‘regulating’, and ‘locking’ the catalytic HNH domain. Q Rev Biophys 51:e91

    Article  Google Scholar 

  • Pervushin K, Riek R, Wider G, Wuthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A 94:12366–12371

    Article  ADS  Google Scholar 

  • Salzmann M, Pervushin K, Wider G, Senn H, Wuthrich K (1998) TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc Natl Acad Sci U S A 95:13585–13590

    Article  ADS  Google Scholar 

  • Strong A, Musunuru K (2017) Genome editing in cardiovascular diseases. Nat Rev Cardiol 14:11–20

    Article  Google Scholar 

  • Tian X, Gu T, Patel S, Bode AM, Lee MH, Dong Z (2019) CRISPR/Cas9—an evolving biological tool kit for cancer biology and oncology. NPJ Precis Oncol 3:8

    Article  Google Scholar 

  • Wang H, La Russa M, Qi LS (2016) CRISPR/Cas9 in Genome Editing and Beyond. Annu Rev Biochem 85:227–264

    Article  Google Scholar 

  • Wishart DS, Arndt D, Berjanskii M, Tang P, Zhou J, Lin G (2008) CS23D a web server for rapid protein structure generation using NMR chemical shifts and sequence data. Nucleic Acids Res. 36:496–502

    Article  Google Scholar 

  • Xiong X, Chen M, Lim WA, Zhao D, Qi LS (2016) CRISPR/Cas9 for human genome engineering and disease research. Annu Rev Genomics Hum Genet 17:131–154

    Article  Google Scholar 

  • Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH (2015) Off-target Effects in CRISPR/Cas9-mediated Genome Engineering. Molecular therapy Nucleic acids 4(11):e264

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from the COBRE Center of Computational Biology of Human Disease (P20GM109035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George P. Lisi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skeens, E., East, K.W. & Lisi, G.P. 1H, 13C, 15 N backbone resonance assignment of the recognition lobe subdomain 3 (Rec3) from Streptococcus pyogenes CRISPR-Cas9. Biomol NMR Assign 15, 25–28 (2021). https://doi.org/10.1007/s12104-020-09977-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12104-020-09977-0

Keywords

Navigation