1H, 13C, 15N backbone resonance assignments of the apo and holo forms of the ABC transporter solute binding protein PiuA from Streptococcus pneumoniae

Abstract

Streptococcus pneumoniae is a Gram-positive human pathogen that causes millions of infections worldwide with an increasing occurrence of antibiotic resistance. Iron acquisition is essential for its survival and virulence, especially under host-imposed nutritional immunity. S. pneumoniae expresses several ATP-binding cassette (ABC) transporters to facilitate acquisition under iron limitation, including PitABCD, PiaABCD, and PiuBCDA. The substrate specificity of PiuBCDA is not fully established. Herein, we report the backbone 1H, 13C and 15N resonance assignments of the 31 kDa soluble, extracellular domain of the substrate binding protein PiuA in the apo form and in complex with Ga(III) and the catechol siderophore-mimic 4-LICAM. These studies provide valuable information for further functional studies of interactions with other proteins, metals, and small molecules.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Andreini C, Putignano V, Rosato A, Banci L (2018) The human iron-proteome. Metallomics 10:1223–1231. https://doi.org/10.1039/c8mt00146d

    Article  Google Scholar 

  2. Cheng W, Li Q, Jiang YL, Zhou CZ, Chen Y (2013) Structures of Streptococcus pneumoniae PiaA and Its Complex with Ferrichrome Reveal Insights into the Substrate Binding and Release of High Affinity Iron Transporters. PLoS One 8:e71451. https://doi.org/10.1371/journal.pone.0071451

    ADS  Article  Google Scholar 

  3. Chu BCH, Otten R, Krewulak KD, Mulder FAA, Vogel HJ (2014) The solution structure, binding properties, and dynamics of the bacterial siderophore-binding protein FepB. J Biol Chem 289:29219–29234. https://doi.org/10.1074/jbc.M114.564021

    Article  Google Scholar 

  4. de Boer M, Gouridis G, Vietrov R, Begg SL, Schuurman-Wolters GK, Husada F, Eleftheriadis N, Poolman B, McDevitt CA, Cordes T (2019) Conformational and dynamic plasticity in substrate-binding proteins underlies selective transport in ABC importers. Elife 8:e44652. https://doi.org/10.7554/eLife.44652

    Article  Google Scholar 

  5. Delaglio F, Grzesiek S, Vuister GW, Pfeifer J, Bax A (1995) NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  6. Delepelaire P (2019) Bacterial ABC transporters of iron containing compounds. Res Microbiol 170:345–357. https://doi.org/10.1016/j.resmic.2019.10.008

    Article  Google Scholar 

  7. Hood MI, Skaar EP (2012) Nutritional immunity: Transition metals at the pathogen-host interface. Nat Rev Microbiol 10:525–537

    Article  Google Scholar 

  8. Hyberts SG, Takeuchi K, Wagner G (2010) Poisson-gap sampling and forward maximum entropy reconstruction for enhancing the resolution and sensitivity of protein NMR data. J Am Chem Soc 132:2145–2147

    Article  Google Scholar 

  9. Hyberts SG, Milbradt AG, Arthanari H, Wagner G (2012) Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling. J Biomol NMR 52:1–13

    Article  Google Scholar 

  10. Keller RLJ (2004) Cantina Verlag, Goldau

  11. Lanie JA, Ng WL, Kazmierczak KM, Andrzejewski TM, Davidsen TM, Wayne KJ, Tettelin H, Glass JI, Winkler ME (2007) Genome sequence of Avery’s virulent serotype 2 strain D39 of Streptococcus pneumoniae and comparison with that of unencapsulated laboratory strain R6. J Bacteriol 189:38–51. https://doi.org/10.1128/JB.01148-06

    Article  Google Scholar 

  12. Lee W, Tonelli M, Markley JL (2015) NMRFAM-SPARKY: Enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31:1325–1327. https://doi.org/10.1093/bioinformatics/btu830

    Article  Google Scholar 

  13. Lynch JP, Zhanel GG (2010) Streptococcus pneumoniae: epidemiology and risk factors, evolution of antimicrobial resistance, and impact of vaccines. Curr Opin Pulm Med 16:217–225. https://doi.org/10.1097/MCP.0b013e3283385653

    Article  Google Scholar 

  14. Maciejewski MW, Schuyler AD, Gryk MR, Moraru II, Romero PR, Ulrich EL, Eghbalnia HR, Livny M, Delaglio F, Hoch JC (2017) NMRbox: a resource for biomolecular NMR computation. Biophys J 112:1529–1534. https://doi.org/10.1016/j.bpj.2017.03.011

    Article  Google Scholar 

  15. Peroutka RJ, Orcutt SJ, Strickler JE, Butt TR (2011) SUMO fusion technology for enhanced protein expression and purification in prokaryotes and eukaryotes. Methods Mol Biol 705:15–30. https://doi.org/10.1007/978-1-61737-967-3_2

    Article  Google Scholar 

  16. Raines DJ, Moroz OV, Wilson KS, Duhme-Klair A-K (2013) Interactions of a Periplasmic Binding Protein with a Tetradentate Siderophore Mimic. Angew Chemie Int Ed 52:4595–4598. https://doi.org/10.1002/anie.201300751

    Article  Google Scholar 

  17. Raines DJ, Moroz OV, Blagova EV, Turkenburg JP, Wilson KS, Duhme-Klair A-K (2016) Bacteria in an intense competition for iron: key component of the Campylobacter jejuni iron uptake system scavenges enterobactin hydrolysis product. Proc Natl Acad Sci U S A 113:5850–5855. https://doi.org/10.1073/pnas.1520829113

    ADS  Article  Google Scholar 

  18. Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42:320–324. https://doi.org/10.1093/nar/gku316

    Article  Google Scholar 

  19. Salzmann M, Wider G, Pervushin K, Senn H, Wüthrich K (1999) TROSY-type triple-resonance experiments for sequential NMR assignments of large proteins. J Am Chem Soc 121:844–848. https://doi.org/10.1021/ja9834226

    Article  Google Scholar 

  20. Shen Y, Bax A (2014) Protein structural information derived from NMR chemical shift with the neural network program TALOS-N. In: Artificial Neural Networks: Second Edition. Springer, New York, pp 17–32

    Google Scholar 

  21. Wilde EJ, Hughes A, Blagova EV, Moroz OV, Thomas RP, Turkenburg JP, Raines DJ, Duhme-Klair AK, Wilson KS (2017) Interactions of the periplasmic binding protein CeuE with Fe(III) n-LICAM 4- siderophore analogues of varied linker length. Sci Rep 7:1–14. https://doi.org/10.1038/srep45941

    Article  Google Scholar 

  22. Zhang Y, Sen S, Giedroc DP (2020) Iron acquisition by bacterial pathogens: beyond tris-catecholate complexes. ChemBioChem 21:cbic.201900778. https://doi.org/10.1002/cbic.201900778

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by US National Institutes of Health grant R35 GM118157 to D.P.G. and UK Engineering and Physical Sciences Research Council grant EP/L024829/1 to A.K.D.K. We thank Dr. Hongwei Wu for technical assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David P. Giedroc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Edmonds, K.A., Zhang, Y., Raines, D.J. et al. 1H, 13C, 15N backbone resonance assignments of the apo and holo forms of the ABC transporter solute binding protein PiuA from Streptococcus pneumoniae. Biomol NMR Assign 14, 233–238 (2020). https://doi.org/10.1007/s12104-020-09952-9

Download citation

Keywords

  • Iron acquisition
  • ABC transporter
  • Pathogen
  • Catechol
  • Siderophore
  • Streptococcus pneumoniae