Skip to main content
Log in

Backbone and side-chain resonance assignments of the methyl-CpG-binding domain of MBD6 from Arabidopsis thaliana

  • Article
  • Published:
Biomolecular NMR Assignments Aims and scope Submit manuscript

Abstract

Epigenetic regulation is essential to various biological phenomena such as cell differentiation and cancer. DNA methylation is one of the most important epigenetic signals, as it is directly involved in gene silencing of transposable elements, genomic imprinting, and chromosome X inactivation. To mediate these processes, methyl-CpG-binding domain (MBD) proteins recognize specific signals encoded in the form of DNA methylation patterns. AtMBD6, one of the 12 MBD proteins in Arabidopsis thaliana, shares a high sequential homology in the MBD domain with mammalian MBD proteins, but a detailed characterization of its structural and functional properties remains elusive. Here, we report the 1H, 13C, and 15N resonance assignments of the isolated MBD domain of AtMBD6. Analysis of the chemical shift data implied that the MBD domain of AtMBD6 has a secondary structure similar to that of mammalian MeCP2, while the β-strands β1 and β3 of AtMBD6 were found to be longer than those of MeCP2. The structural differences provide insight into the different recognition mechanisms of methylated DNA by plant and mammalian MBDs. The assignments reported here will aid further analyses such as titration experiments and three-dimensional structure determination using NMR to yield a detailed characterization of the interaction between AtMBD6 and methylated DNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Ho KL, McNae IW, Schmiedeberg L, Klose RJ, Bird AP, Walkinshaw MD (2008) MeCP2 binding to DNA depends upon hydration at methyl-CpG. Mol Cell 29:525–531

    Article  Google Scholar 

  • Johnson BA, Blevins RA (1994) NMR View: a computer program for the visualization and analysis of NMR data. J Biomol NMR 4:603–614

    Article  Google Scholar 

  • Kobayashi N, Iwahara J, Koshiba S, Tomizawa T, Tochio N, Güntert P, Kigawa T, Yokoyama S (2007) KUJIRA, a package of integrated modules for systematic and interactive analysis of NMR data directed to high-throughput NMR structure studies. J Biomol NMR 39:31–52

    Article  Google Scholar 

  • Markley JL, Bax A, Arata Y, Hilbers CW, Kaptein R, Sykes BD, Wright PE, Wüthrich K (1998) Recommendations for the presentation of NMR structures of proteins and nucleic acids. J Mol Biol 280:933–952

    Article  Google Scholar 

  • Marsh JA, Singh VK, Jia Z, Forman-Kay JD (2006) Sensitivity of secondary structure propensities to sequence differences between α-and γ-synuclein: implications for fibrillation. Protein Sci 15:2795–2804

    Article  Google Scholar 

  • Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution. Prog Nucl Magn Reson Spectrosc 34:93–158

    Article  Google Scholar 

  • Schmidt E, Güntert P (2012) A new algorithm for reliable and general NMR resonance assignment. J Am Chem Soc 134:12817–12829

    Article  Google Scholar 

  • Shen Y, Lange O, Delaglio F, Rossi P, Aramini JM, Liu G, Eletsky A, Wu Y, Singarapu KK, Lemak A (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci USA 105:4685–4690

    Article  ADS  Google Scholar 

  • Zemach A, Grafi G (2003) Characterization of Arabidopsis thaliana methyl-CpG-binding domain (MBD) proteins. Plant J 34:565–572

    Article  Google Scholar 

  • Zemach A, Li Y, Wayburn B, Ben-Meir H, Kiss V, Avivi Y, Kalchenko V, Jacobsen SE, Grafi G (2005) DDM1 binds Arabidopsis methyl-CpG binding domain proteins and affects their subnuclear localization. Plant Cell 17:1549–1558

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Agency for Medical Research and Development (AMED, Grant No. JP16gm0510004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Shirakawa.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwakawa, N., Mahana, Y., Ono, A. et al. Backbone and side-chain resonance assignments of the methyl-CpG-binding domain of MBD6 from Arabidopsis thaliana. Biomol NMR Assign 13, 59–62 (2019). https://doi.org/10.1007/s12104-018-9851-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12104-018-9851-2

Keywords

Navigation