1H, 15N and 13C backbone assignment of apo TDP-43 RNA recognition motifs


TAR DNA-binding protein 43 (TDP-43) is a ubiquitously expressed nuclear protein that influences diverse cellular processes by regulating alternative splicing of RNA and microRNA biogenesis. It is also a pathological protein found in sporadic ALS and in the most common subtype of frontotemporal lobar degeneration with ubiquitinated inclusions (FLTD-U). TDP-43 has two tandem RNA-binding domains, RRM1 and RRM2. The NMR structure of TDP-43 was solved in the presence of UG-rich RNA sequences bound to the RRM1 and RRM2 domains. Here we report the backbone assignment of apo TDP-43. The chemical shift (HN, N, C, Cα and Cβ) analysis shows the predicted regions of secondary structure are in good agreement with those observed for TDP-43 in complex with RNA. However, our data show that the apo structure of TPD-43 has increased flexibility in the regions that would normally have been used to anchor the RNA bases. The backbone chemical shifts assignments will prove useful in the study of TDP-43 interaction with non-canonical RNA and RRM-binding proteins.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. Bahrami A, Assadi AH, Markley JL, Eghbalnia HR (2009) Probabilistic interaction network of evidence algorithm and its application to complete labeling of peak lists from protein NMR spectroscopy. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1000307

    Google Scholar 

  2. Buratti E, Baralle FE (2008) Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front Biosci 13:867–878. https://doi.org/10.2741/2727

    Article  Google Scholar 

  3. Chiang CH, Grauffel C, Wu LS, Kuo PH, Doudeva LG, Lim C, Shen CK, Yuan HS (2016) Structural analysis of disease-related TDP-43 D169G mutation: linking enhanced stability and caspase cleavage efficiency to protein accumulation. Sci Rep. https://doi.org/10.1038/srep21581

    Google Scholar 

  4. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293. https://doi.org/10.1007/BF00197809

    Article  Google Scholar 

  5. Elden AC, Kim HJ, Hart MP, Alice S, Chen-Plotkin BS, Johnson X, Fang M, Armakola et al (2010) Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466(7310):1069–1075. https://doi.org/10.1038/nature09320

    ADS  Article  Google Scholar 

  6. Ishiguro A, Kimura N, Watanabe Y, Watanabe S, Ishihama A (2016) TDP- 43 binds and transports G-quadruplex-containing MRNAs into neurites for local translation. Genes Cells 21(5):466–481. https://doi.org/10.1111/gtc.12352

    Article  Google Scholar 

  7. Jiang L, Lei J, Zhao XF, Yin WT, He H, Yang MX, Che, Hong Yu Hu (2016) Two mutations G335D and Q343R within the amyloidogenic core region of TDP-43 influence its aggregation and inclusion formation. Sci Rep. https://doi.org/10.1038/srep23928

    Google Scholar 

  8. Josephs KA (2010) Dementia and the TAR DNA binding protein 43. Clin Pharmacol Ther. https://doi.org/10.1038/clpt.2010.112

    Google Scholar 

  9. Kansal K, Irwin D, Pletnikova O, Trojanowski J, Rabins P, Troncoso J, Grossman M, Onyike C (2015) Dementia phenotypes associated with TDP43 versus mixed TDP43/alzheimer pathology. Int Psychogeriatr 27:S116–S117. https://doi.org/10.1017/S1041610215002161

    Google Scholar 

  10. Kuo PH, Doudeva LG, Wang YT, Shen CK, Yuan HS (2009) Structural insights into TDP-43 in nucleic-acid binding and domain interactions. Nucleic Acids Res 37(6):1799–1808. https://doi.org/10.1093/nar/gkp013

    Article  Google Scholar 

  11. Kuo P, Chiang CH, Wang YT, Doudeva LG, Yuan HS (2014) The crystal structure of TDP-43 RRM1-DNA complex reveals the specific recognition for UG- and TG-rich nucleic acids. Nucleic Acids Res 42(7):4712–4722. https://doi.org/10.1093/nar/gkt1407

    Article  Google Scholar 

  12. Lee W, Tonelli M, Markley JL (2015) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31(8):1325–1327. https://doi.org/10.1093/bioinformatics/btu830

    Article  Google Scholar 

  13. Lukavsky PJ, Daujotyte D, Tollervey JR, Ule J, Stuani C, Buratti E, Baralle FE, Fred F, Damberger, Frédéric HT, Allain (2013) Molecular basis of UG- rich RNA recognition by the human splicing factor TDP-43. Nat Struct Mol Biol 20(12):1443–1449. https://doi.org/10.1038/nsmb.2698

    Article  Google Scholar 

  14. Mackenzie IR, Rademakers R (2008) The role of transactive response DNA-binding protein-43 in amyotrophic lateral sclerosis and frontotemporal dementia. Curr Opin Neurol. https://doi.org/10.1097/WCO.0b013e3283168d1d

    Google Scholar 

  15. Mompean M, Romano V, Pantoja-Uceda D, Stuani C, Baralle FE, Buratti E, Douglas VL (2016) The TDP-43 N-terminal domain structure at high resolution. FEBS J. https://doi.org/10.1111/febs.13651

    Google Scholar 

  16. Ou SH, Wu F, Harrich D, García-Martínez LF, Gaynor RB (1995) Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J Virol 69(6):3584–3596

    Google Scholar 

  17. Shen Y, Bax A (2014) Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks. J Biomol NMR 56(3):227–241

    Google Scholar 

Download references


We thank Dr. Michael Clarkson, Staff Scientist at the University of Arizona, and Dr. Brian Cherry, Associate Research Professional at Arizona State University Magnetic Resonance Research Center for their help with NMR acquisition. This work was supported by grants from 2014 AHSC-CDA Arizona Health Sciences Career Development Award, and AZ ABRC ADHS16-162407 Arizona Grant.

Author information



Corresponding authors

Correspondence to Vlad K. Kumirov or May Khanna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scott, D.D., Francois-Moutal, L., Kumirov, V.K. et al. 1H, 15N and 13C backbone assignment of apo TDP-43 RNA recognition motifs. Biomol NMR Assign 13, 163–167 (2019). https://doi.org/10.1007/s12104-018-09870-x

Download citation


  • TDP-43
  • RNA recognition motif
  • NMR
  • HSQC
  • Chemical shift assignment
  • Secondary structure