Biomolecular NMR Assignments

, Volume 13, Issue 1, pp 155–161 | Cite as

1H, 13C, and 15N resonance assignments of the cytokine interleukin-36β isoform-2

  • Amit Kumar
  • Amelie Wißbrock
  • Peter Bellstedt
  • Andras Lang
  • Ramadurai Ramachandran
  • Christoph Wiedemann
  • Diana Imhof
  • Oliver OhlenschlägerEmail author


Interleukins are cytokines performing central tasks in the human immune system. Interleukin-36β (IL-36β) is a member of the interleukin-1 superfamily as are its homologues IL-36α and IL-36γ. All of them interact with a common receptor composed of IL-36R and IL-1R/acP. IL-36 cytokines can activate IL-36R to proliferation of CD4 + lymphocytes or stimulate M2 macrophages as potently as IL-1β. Within our efforts to study the structure–function relationship of the three interleukins IL-36α, IL-36β and IL-36γ by heteronuclear multidimensional NMR, we here report the 1H, 13C, and 15N resonance assignments for the backbone and side chain nuclei of cytokine interleukin-36β isoform-2.


Resonance assignments Heteronuclear NMR Interleukin-36β Interleukin-1 superfamily Cytokines 



Financial support by the Deutsche Forschungsgemeinschaft (DFG) within FOR 1738 (to D.I. and O.O.) is gratefully acknowledged. The FLI is a member of the Leibniz Association (WGL) and is financially supported by the Federal Government of Germany and the State of Thuringia. We thank Prof. Seamus Martin, Smurfit Institute of Genetics, Trinity College Dublin, Ireland for providing the IL-36β plasmid.


  1. Andersen NH, Neidigh JW, Harris SM, Lee GM, Liu Z, Tong H (1997) Extracting information from the temperature gradients of polypeptide NH chemical shifts. J Am Chem Soc 119:8547–8561CrossRefGoogle Scholar
  2. Bax A, Ikura M (1991) An efficient 3D NMR technique for correlating the proton and 15N backbone amide resonances with the alpha-carbon of the preceding residue in uniformly 15N/13C enriched proteins. J Biomol NMR 1:99–104CrossRefGoogle Scholar
  3. Bax A, Ikura M, Kay LE, Torchia DA, Tschudin R (1990) Comparison of different modes of two-dimensional reverse-correlation NMR for the study of proteins. J Magn Reson 86:304–318ADSGoogle Scholar
  4. Blumberg H et al (2007) Opposing activities of two novel members of the IL-1 ligand family regulate skin inflammation. J Exp Med 204:2603–2614CrossRefGoogle Scholar
  5. Boehner A, Navarini AA, Eyerich K (2018) Generalized pustular psoriasis—a model disease for specific targeted immunotherapy, systematic review. Exp Dermatol 27:1067–1077CrossRefGoogle Scholar
  6. Cierpicki T, Otlewski J (2001) Amide proton temperature coefficients as hydrogen bond indicators in proteins. J Biomol NMR 21:249–261CrossRefGoogle Scholar
  7. Cierpicki T, Zhukov I, Byrd RA, Otlewski J (2002) Hydrogen bonds in human ubiquitin reflected in temperature coefficients of amide protons. J Magn Reson 157:178–180ADSCrossRefGoogle Scholar
  8. Clancy DM, Henry CM, Davidovich PB, Sullivan GP, Belotcerkovskaya E, Martin SJ (2016) Production of biologically active IL-36 family cytokines through insertion of N-terminal caspase cleavage motifs. FEBS Open Bio 6:338–348CrossRefGoogle Scholar
  9. Clubb RT, Thanabal V, Wagner G (1992) A constant-time 3-Dimensional triple-resonance pulse scheme to correlate intraresidue H-1(N), N-15, and C-13′ chemical-shifts in N-15-C-13-labeled proteins. J Magn Reson 97:213–217ADSGoogle Scholar
  10. Daley ME, Graether SP, Sykes BD (2004) Hydrogen bonding on the ice-binding face of a beta-helical antifreeze protein indicated by amide proton NMR chemical shifts. Biochemistry 43:13012–13017CrossRefGoogle Scholar
  11. Debets R et al (2001) Two novel IL-1 family members, IL-1 delta and IL-1 epsilon, function as an antagonist and agonist of NF-kappa B activation through the orphan IL-1 receptor-related protein 2. J Immunol 167:1440–1446CrossRefGoogle Scholar
  12. Dunn EF, Gay NJ, Bristow AF, Gearing DP, O’Neill LA, Pei XY (2003) High-resolution structure of murine interleukin 1 homologue IL-1F5 reveals unique loop conformations for receptor binding specificity. Biochemistry 42:10938–10944CrossRefGoogle Scholar
  13. Farooq M et al (2013) Mutation analysis of the IL36RN gene in 14 Japanese patients with generalized pustular psoriasis. Hum Mutat 34:176–183CrossRefGoogle Scholar
  14. Gabay C, Towne JE (2015) Regulation and function of interleukin-36 cytokines in homeostasis and pathological conditions. J Leukoc Biol 97:645–652CrossRefGoogle Scholar
  15. Goradia N, Wissbrock A, Wiedemann C, Bordusa F, Ramachandran R, Imhof D, Ohlenschlager O (2016) (1)H, (13)C, and (15)N resonance assignments for the pro-inflammatory cytokine interleukin-36alpha. Biomol NMR Assign 10:329–333CrossRefGoogle Scholar
  16. Grzesiek S, Bax A (1993) Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J Biomol NMR 3:185–204Google Scholar
  17. Gunther S, Sundberg EJ (2014) Molecular determinants of agonist and antagonist signaling through the IL-36 receptor. J Immunol 193:921–930CrossRefGoogle Scholar
  18. Hafsa NE, Arndt D, Wishart DS (2015) CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts. Nucleic Acids Res 43:W370–W377CrossRefGoogle Scholar
  19. Hahn M, Frey S, Hueber AJ (2017) The novel interleukin-1 cytokine family members in inflammatory diseases. Curr Opin Rheumatol 29:208–213CrossRefGoogle Scholar
  20. Henry CM, Sullivan GP, Clancy DM, Afonina IS, Kulms D, Martin SJ (2016) Neutrophil-Derived Proteases Escalate Inflammation through Activation of IL-36 Family Cytokines. Cell Rep 14:708–722CrossRefGoogle Scholar
  21. Kanazawa N, Nakamura T, Mikita N, Furukawa F (2013) Novel IL36RN mutation in a Japanese case of early onset generalized pustular psoriasis. J Dermatol 40:749–751CrossRefGoogle Scholar
  22. Kay LE, Ikura M, Tschudin R, Bax A (1990) 3-Dimensional triple-resonance NMR-spectroscopy of isotopically enriched proteins. J Magn Reson 89:496–514ADSGoogle Scholar
  23. Kay LE, Guang-Yi X, Singer AU, Muhandiram DR, Forman-Kay JD (1993) A gradient-enhanced HCCH-TOCSY experiment for recording side-chain 1H and 13C correlations in H2O samples for proteins. J Magn Reson B 101:333–337ADSCrossRefGoogle Scholar
  24. Kunz M, Ibrahim SM (2009) Cytokines and cytokine profiles in human autoimmune diseases and animal models of autoimmunity. Mediators Inflamm 2009:979258CrossRefGoogle Scholar
  25. Marrakchi S et al (2011) Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N Engl J Med 365:620–628CrossRefGoogle Scholar
  26. Moudgil KD, Choubey D (2011) Cytokines in autoimmunity: role in induction, regulation, and treatment. J Interferon Cytokine Res 31:695–703CrossRefGoogle Scholar
  27. O’Shea JJ, Ma A, Lipsky P (2002) Cytokines and autoimmunity. Nat Rev Immunol 2:37–45CrossRefGoogle Scholar
  28. Renert-Yuval Y, Horev L, Babay S, Tams S, Ramot Y, Zlotogorski A, Molho-Pessach V (2014) IL36RN mutation causing generalized pustular psoriasis in a Palestinian patient. Int J Dermatol 53:866–868CrossRefGoogle Scholar
  29. Schubert M, Labudde D, Oschkinat H, Schmieder P (2002) A software tool for the prediction of Xaa-Pro peptide bond conformations in proteins based on 13C chemical shift statistics. J Biomol NMR 24:149–154CrossRefGoogle Scholar
  30. Sims JE, Smith DE (2010) The IL-1 family: regulators of immunity. Nat Rev Immunol 10:89–102CrossRefGoogle Scholar
  31. Smith DE, Renshaw BR, Ketchem RR, Kubin M, Garka KE, Sims JE (2000) Four new members expand the interleukin-1 superfamily. J Biol Chem 275:1169–1175CrossRefGoogle Scholar
  32. Sugiura K, Takeichi T, Kono M, Ogawa Y, Shimoyama Y, Muro Y, Akiyama M (2012) A novel IL36RN/IL1F5 homozygous nonsense mutation, p.Arg10X, in a Japanese patient with adult-onset generalized pustular psoriasis. Br J Dermatol 167:699–701CrossRefGoogle Scholar
  33. Tauber M et al (2016) IL36RN mutations affect protein expression and function: a basis for genotype-phenotype correlation in pustular diseases. J Invest Dermatol 136:1811–1819CrossRefGoogle Scholar
  34. Towne JE, Sims JE (2012) IL-36 in psoriasis. Curr Opin Pharmacol 12:486–490CrossRefGoogle Scholar
  35. Towne JE, Garka KE, Renshaw BR, Virca GD, Sims JE (2004) Interleukin (IL)-1F6, IL-1F8, and IL-1F9 signal through IL-1Rrp2 and IL-1RAcP to activate the pathway leading to NF-kappaB and MAPKs. J Biol Chem 279:13677–13688CrossRefGoogle Scholar
  36. Towne JE, Renshaw BR, Douangpanya J, Lipsky BP, Shen M, Gabel CA, Sims JE (2011) Interleukin-36 (IL-36) ligands require processing for full agonist (IL-36alpha, IL-36beta, and IL-36gamma) or antagonist (IL-36Ra) activity. J Biol Chem 286:42594–42602CrossRefGoogle Scholar
  37. Vranken WF et al (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696CrossRefGoogle Scholar
  38. Vuister GW, Bax A (1993) Quantitative J correlation—a new approach for measuring homonuclear 3-Bond J(H(N)H(Alpha) coupling-constants in N-15-enriched proteins. J Am Chem Soc 115:7772–7777CrossRefGoogle Scholar
  39. Wittekind M, Mueller L (1993) HNCACB: a high-sensitivity 3D NMR experiment to correlate amide proton and nitrogen resonances with the alpha-carbon and beta-carbon resonances in proteins. J Magn Reson B 101:201–205CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Leibniz Institute on Aging – Fritz Lipmann InstituteJenaGermany
  2. 2.Faculty of Chemistry and Earth SciencesFriedrich Schiller UniversityJenaGermany
  3. 3.Institute of Biochemistry and BiotechnologyMartin Luther University Halle-WittenbergHalle/SaaleGermany
  4. 4.Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical InstituteUniversity of BonnBonnGermany

Personalised recommendations