Advertisement

Biomolecular NMR Assignments

, Volume 12, Issue 1, pp 139–143 | Cite as

1H, 13C and 15N backbone and partial side-chain resonance assignments of the C-terminal domain of HIV-1 Pr55Gag encompassed in NCp15

  • Valéry Larue
  • Marjorie Catala
  • Anissa Belfetmi
  • Loussiné Zargarian
  • Olivier Mauffret
  • Carine Tisné
Article

Abstract

During HIV-1 assembly, the Pr55Gag polyprotein precursor (Gag) interacts with the genomic RNA, with lipids of the plasma membrane, with host proteins (ALIX, TSG101) through the ESCRT complex, with the viral protein Vpr and are involved in intermolecular interactions with other Pr55Gag proteins. This network of interactions is responsible for the formation of the viral particle, the selection of genomic RNA and the packaging of Vpr. The C-terminal domain of Gag encompassed in NCp15 is involved in the majority of these interactions, either by its nucleocapsid or its p6 domains. We study the NCp15 protein as a model of the C-terminal domain of Gag to better understand the role of this domain in the assembly and budding of HIV-1. Here, we report the 1H, 13C and 15N chemical shift assignments of NCp15 obtained by heteronuclear multidimensional NMR spectroscopy as well as the analysis of its secondary structure in solution. These assignments of NCp15 pave the way for interaction studies with its numerous partners.

Keywords

Nucleocapsid HIV-1 NCp15 NMR Resonance assignment 

Notes

Acknowledgements

This work was supported by grants from SIDACTION and ANRS. We thank Nelly Morellet and Ewen Lescop for technical advice and helpful discussion. Financial support from the TGIR-RMN-THC FR3050 CNRS for conducting the research is gratefully acknowledged. We are grateful to Feder, Sesame Ile-de-France and Paris Descartes University that financed a new NMR console that allows us to perform NMR experiments with state-of-the-art 600 MHz spectrometer.

Funding

The funding was provided by Agence Nationale de Recherches sur le Sida et les Hepatites Virales, Sidaction.

References

  1. Alfadhli A, Still A, Barklis E (2009) Analysis of human immunodeficiency virus type 1 matrix binding to membranes and nucleic acids. J Virol 83:12196–12203.  https://doi.org/10.1128/JVI.01197-09 CrossRefGoogle Scholar
  2. Bachand F, Yao XJ, Hrimech M, Rougeau N, Cohen EA (1999) Incorporation of Vpr into human immunodeficiency virus type 1 requires a direct interaction with the p6 domain of the p55 gag precursor. J Biol Chem 274:9083–9091CrossRefGoogle Scholar
  3. Cheung MS, Maguire ML, Stevens TJ, Broadhurst RW (2010) DANGLE: a Bayesian inferential method for predicting protein backbone dihedral angles and secondary structure. J Magn Reson 202:223–233.  https://doi.org/10.1016/j.jmr.2009.11.008 ADSCrossRefGoogle Scholar
  4. Chukkapalli V, Oh SJ, Ono A (2010) Opposing mechanisms involving RNA and lipids regulate HIV-1 Gag membrane binding through the highly basic region of the matrix domain. Proc Natl Acad Sci USA 107:1600–1605.  https://doi.org/10.1073/pnas.0908661107 ADSCrossRefGoogle Scholar
  5. De Guzman RN, Wu ZR, Stalling CC, Pappalardo L, Borer PN, Summers MF (1998) Structure of the HIV-1 nucleocapsid protein bound to the SL3 psi-RNA. Recogn Elem Sci 279:384–388Google Scholar
  6. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  7. Demirov DG, Ono A, Orenstein JM, Freed EO (2002) Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function. Proc Natl Acad Sci USA 99:955–960.  https://doi.org/10.1073/pnas.032511899 ADSCrossRefGoogle Scholar
  8. Deshmukh L, Ghirlando R, Clore GM (2015) Conformation and dynamics of the Gag polyprotein of the human immunodeficiency virus 1 studied by NMR spectroscopy. Proc Natl Acad Sci USA 112:3374–3379.  https://doi.org/10.1073/pnas.1501985112 ADSCrossRefGoogle Scholar
  9. Dussupt V, Javid MP, Abou-Jaoude G, Jadwin JA, de La Cruz J, Nagashima K, Bouamr F (2009) The nucleocapsid region of HIV-1 Gag cooperates with the PTAP and LYPXnL late domains to recruit the cellular machinery necessary for viral budding. PLoS Pathog 5:e1000339.  https://doi.org/10.1371/journal.ppat.1000339 CrossRefGoogle Scholar
  10. Dussupt V, Sette P, Bello NF, Javid MP, Nagashima K, Bouamr F (2011) Basic residues in the nucleocapsid domain of Gag are critical for late events of HIV-1 budding. J Virol 85:2304–2315.  https://doi.org/10.1128/JVI.01562-10 CrossRefGoogle Scholar
  11. Fossen T, Wray V, Bruns K, Rachmat J, Henklein P, Tessmer U, Maczurek A, Klinger P, Schubert U (2005) Solution structure of the human immunodeficiency virus type 1 p6 protein. J Biol Chem 280:42515–42527.  https://doi.org/10.1074/jbc.M507375200
  12. Goddard TD, Kneller DG SPARKY 3. University of Califormia, San FranciscoGoogle Scholar
  13. Kjaergaard M, Poulsen FM (2012) Disordered proteins studied by chemical shifts. Prog Nucl Magn Reson Spectrosc 60:42–51.  https://doi.org/10.1016/j.pnmrs.2011.10.001 CrossRefGoogle Scholar
  14. Kutluay SB, Zang T, Blanco-Melo D, Powell C, Jannain D, Errando M, Bieniasz PD (2014) Global changes in the RNA binding specificity of HIV-1 gag regulate virion genesis. Cell 159:1096–1109.  https://doi.org/10.1016/j.cell.2014.09.057 CrossRefGoogle Scholar
  15. Lee BM, De Guzman RN, Turner BG, Tjandra N, Summers MF (1998) Dynamical behavior of the HIV-1 nucleocapsid protein. J Mol Biol 279:633–649.  https://doi.org/10.1006/jmbi.1998.1766 CrossRefGoogle Scholar
  16. Lee S, Joshi A, Nagashima K, Freed EO, Hurley JH (2007) Structural basis for viral late-domain binding to Alix. Nat Struct Mol Biol 14:194–199.  https://doi.org/10.1038/nsmb1203 CrossRefGoogle Scholar
  17. Lescop E, Schanda P, Brutscher B (2007) A set of BEST triple-resonance experiments for time-optimized protein resonance assignment. J Magn Reson 187:163–169.  https://doi.org/10.1016/j.jmr.2007.04.002 ADSCrossRefGoogle Scholar
  18. Morellet N, Jullian N, De Rocquigny H, Maigret B, Darlix JL, Roques BP (1992) Determination of the structure of the nucleocapsid protein NCp7 from the human immunodeficiency virus type 1 by 1H NMR. Embo J 11:3059–3065Google Scholar
  19. Salgado GF, Marquant R, Vogel A, Alves ID, Feller SE, Morellet N, Bouaziz S (2009a) Structural studies of HIV-1 Gag p6ct and its interaction with Vpr determined by solution nuclear magnetic resonance. Biochemistry 48:2355–2367.  https://doi.org/10.1021/bi801794v CrossRefGoogle Scholar
  20. Salgado GF, Vogel A, Marquant R, Feller SE, Bouaziz S, Alves ID (2009b) The role of membranes in the organization of HIV-1 Gag p6 and Vpr: p6 shows high affinity for membrane bilayers which substantially increases the interaction between p6 and Vpr. J Med Chem 52:7157–7162.  https://doi.org/10.1021/jm901106t CrossRefGoogle Scholar
  21. Schwarzinger S, Kroon GJ, Foss TR, Chung J, Wright PE, Dyson HJ (2001) Sequence-dependent correction of random coil NMR chemical shifts. J Am Chem Soc 123:2970–2978CrossRefGoogle Scholar
  22. Sette P, Dussupt V, Bouamr F (2012) Identification of the HIV-1 NC binding interface in Alix Bro1 reveals a role for. RNA J Virol 86:11608–11615.  https://doi.org/10.1128/JVI.01260-12 CrossRefGoogle Scholar
  23. Shkriabai N, Datta SA, Zhao Z, Hess S, Rein A, Kvaratskhelia M (2006) Interactions of HIV-1 Gag. with assembly cofactors. Biochemistry 45:4077–4083.  https://doi.org/10.1021/bi052308e CrossRefGoogle Scholar
  24. Sleiman D, Goldschmidt V, Barraud P, Marquet R, Paillart JC, Tisne C (2012) Initiation of HIV-1 reverse transcription and functional role of nucleocapsid-mediated tRNA/viral genome interactions. Virus Res 169:324–339.  https://doi.org/10.1016/j.virusres.2012.06.006 CrossRefGoogle Scholar
  25. Solbak SM, Reksten TR, Hahn F, Wray V, Henklein P, Henklein P, Halskau Ø, Schubert U, Fossen T (2013) HIV-1 p6 - a structured to flexible multifunctional membrane-interacting protein. Biochim Biophys Acta 1828:816–823.  https://doi.org/10.1016/j.bbamem.2012.11.010
  26. Solyom Z, Schwarten M, Geist L, Konrat R, Willbold D, Brutscher B (2013) BEST-TROSY experiments for time-efficient sequential resonance assignment of large disordered proteins. J Biomol NMR 55:311–321.  https://doi.org/10.1007/s10858-013-9715-0 CrossRefGoogle Scholar
  27. Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas M, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696.  https://doi.org/10.1002/prot.20449
  28. Wishart DS, Sykes BD (1994) The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4:171–180CrossRefGoogle Scholar
  29. Wishart DS, Sykes BD, Richards FM (1992) The chemical shift index: a fast and simple method for the assignment of protein secondary structure through. NMR Spectrosc Biochem 31:1647–1651Google Scholar
  30. Wu T, Gorelick RJ, Levin JG (2014) Selection of fully processed HIV-1 nucleocapsid protein is required for optimal nucleic acid chaperone activity in reverse transcription. Virus Res 193:52–64.  https://doi.org/10.1016/j.virusres.2014.06.004 CrossRefGoogle Scholar
  31. Zhang H, Neal S, Wishart DS (2003) RefDB: a database of uniformly referenced protein chemical shifts. J Biomol NMR 25:173–195CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Valéry Larue
    • 1
  • Marjorie Catala
    • 1
    • 2
  • Anissa Belfetmi
    • 3
  • Loussiné Zargarian
    • 3
  • Olivier Mauffret
    • 3
  • Carine Tisné
    • 1
    • 2
  1. 1.Laboratoire de Cristallographie et RMN BiologiquesCNRS UMR 8015, Faculté de Pharmacie, Université Paris Descartes, USPCParisFrance
  2. 2.Laboratoire d’Expression génétique microbienneIBPC, CNRS UMR 8261, USPCParisFrance
  3. 3.LBPA, CNRS UMR 8113, ENS Paris-SaclayUniversité Paris-SaclayCachanFrance

Personalised recommendations