Biomolecular NMR Assignments

, Volume 12, Issue 1, pp 99–102 | Cite as

1H, 13C and 15N chemical shift assignment of lissencephaly-1 homology (LisH) domain homodimer of human two-hybrid-associated protein 1 with RanBPM (Twa1)

  • Talita S. de Araujo
  • Marcius S. Almeida


The CTLH complex is a large, highly conserved eukaryotic complex composed of eight proteins that has been associated to several cellular functions, more often described as an E3 ubiquitin ligase complex involved in protein degradation through ubiquitination but also via vacuole-dependent degradation. A common feature observed in several components of this complex is the presence of the domains lissencephaly-1 homology (LisH) and C-terminal to LisH (CTLH). The LisH domain is found in several proteins involved in chromosome segregation, microtubule dynamics, and cell migration. Also, this domain participates in protein dimerization, besides affecting protein half-life, and influencing in specific cellular localization. Among the proteins found in the CTLH complex, Twa1 (Two-hybrid-associated protein 1 with RanBPM), also known as Gid8 (glucose-induced degradation protein 8 homolog) is the smallest, being a good model for structural studies by NMR. In this work we report the chemical shift assignments of the homodimeric LisH domain of Twa1, as a first step to determine its solution structure.


Homo sapiens Chromosome segregation Ubiquitin ligase Dimerization Twa1 Gid8 



The Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas (CNRMN-UFRJ) is gratefully acknowledged for providing access to NMR instrumentation. This work was supported by Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro and Conselho Nacional de Desenvolvimento Científico e Tecnológico. We thank Jessica Moreira de Azevedo for technical support.


  1. Emes RD, Ponting CP (2001) A new sequence motif linking lissencephaly, Treacher Collins and oral-facial-digital type 1 syndromes, microtubule dynamics and cell migration. Hum Mol Genet 10:2813–2820. doi: 10.1093/hmg/10.24.2813 CrossRefGoogle Scholar
  2. Farrow NA, Muhandiram R, Singer AU et al (1994) Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. BioChemistry 33:5984–6003. doi: 10.1021/bi00185a040 CrossRefGoogle Scholar
  3. Francis O, Han F, Adams JC (2013) Molecular phylogeny of a RING E3 ubiquitin ligase, conserved in eukaryotic cells and dominated by homologous components, the Muskelin/RanBPM/CTLH complex. PLOS ONE 8:e75217. doi: 10.1371/journal.pone.0075217 ADSCrossRefGoogle Scholar
  4. Francis O, Baker GE, Race PR, Adams JC (2017) Studies of recombinant TWA1 reveal constitutive dimerization. Biosci Rep 37:BSR20160401. doi: 10.1042/BSR20160401 CrossRefGoogle Scholar
  5. Gerlitz G, Darhin E, Giorgio G, Franco B, Reiner O (2005) Novel functional features of the Lis-H domain: role in protein dimerization, half-life and cellular localization. Cell Cycle 4:1632–1640. doi: 10.4161/cc.4.11.2151 CrossRefGoogle Scholar
  6. Kay LE, Torchia DA, Bax A (1989) Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. BioChemistry 28:8972–8979. doi: 10.1021/bi00449a003 CrossRefGoogle Scholar
  7. Keller R (2004) The computer aided resonance assignment tutorial. CANTINA Verlag, SwitzerlandGoogle Scholar
  8. Kim MH, Cooper DR, Oleksy A et al (2004) The structure of the N-terminal domain of the product of the lissencephaly gene Lis1 and its functional implications. Structure 12:987–998. doi: 10.1016/j.str.2004.03.024 CrossRefGoogle Scholar
  9. Kobayashi N, Yang J, Ueda A et al (2007) RanBPM, Muskelin, p48EMLP, p44CTLH, and the armadillo-repeat proteins ARMC8α and ARMC8β are components of the CTLH complex. Gene 396:236–247. doi: 10.1016/j.gene.2007.02.032 CrossRefGoogle Scholar
  10. Lu Y, Xie S, Zhang W et al (2017) Twa1/Gid8 is a β-catenin nuclear retention factor in Wnt signaling and colorectal tumorigenesis. Cell Res. doi: 10.1038/cr.2017.107 Google Scholar
  11. Mikolajka A, Yan X, Popowicz GM et al (2006) Structure of the N-terminal domain of the FOP (FGFR1OP) protein and implications for its dimerization and centrosomal localization. J Mol Biol 359:863–875. doi: 10.1016/j.jmb.2006.03.070 CrossRefGoogle Scholar
  12. Oberoi J, Fairall L, Watson PJ et al (2011) Structural basis for the assembly of the SMRT/NCoR core transcriptional repression machinery. Nat Struct Mol Biol 18:177–184. doi: 10.1038/nsmb.1983 CrossRefGoogle Scholar
  13. Salemi LM, Maitland MER, McTavish CJ, Schild-Poulter C (2017) Cell signalling pathway regulation by RanBPM: molecular insights and disease implications. Open Biol 7:170081. doi: 10.1098/rsob.170081 CrossRefGoogle Scholar
  14. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) Talos+: a hybrid method for predicting protein backbone torsion angle from NMR chemical shifts. J Biomol NMR 44:213–223. doi: 10.1007/s10858-009-9333-z CrossRefGoogle Scholar
  15. Suzuki T, Ueda A, Kobayashi N, Yang J et al (2008) Proteasome dependent degradation of alpha-catenin is regulated by interaction with ARMc8alpha. Biochem J 411:581–591. doi: 10.1042/BJ20071312 CrossRefGoogle Scholar
  16. Tarricone C, Perrina F, Monzani S et al (2004) Coupling PAF signaling to dynein regulation: structure of LIS1 in complex with PAF-acetylhydrolase. Neuron 44:809–821. doi: 10.1016/j.neuron.2004.11.019 Google Scholar
  17. Tomaru K, Ueda A, Suzuki T et al (2010) Armadillo repeat containing 8_ binds to HRS and promotes HRS interaction with ubiquitinated proteins. Open Biochem J 4:1–8. doi: 10.2174/1874091X01004010001 CrossRefGoogle Scholar
  18. Umeda M, Nishitani H, Nishimoto T (2003) A novel nuclear protein, Twa1, and Muskelin comprise a complex with RanBPM. Gene 303:47–54CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Instituto de Bioquímica Médica Leopoldo de Meis, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO)Universidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations